已知矩形紙片ABCD中,AB=2,BC=3.
操作:將矩形紙片沿EF折疊,使點B落在邊CD上.
探究:

(1)如圖1,若點B與點D重合,你認(rèn)為△EDA1和△FDC全等嗎?如果全等,請給出證明,如果不全等,請說明理由;
(2)如圖2,若點B與CD的中點重合,請你判斷△FCB1、△B1DG和△EA1G之間的關(guān)系,如果全等,只需寫出結(jié)果,如果相似,請寫出結(jié)果,求出相應(yīng)的相似比;
(3)如圖2,請你探索,當(dāng)點B落在CD邊上何處,即B1C的長度為多少時,△FCB1與△B1DG全等.
(1)全等;(2)△B1DG和△EA1G全等,△FCB1與△B1DG相似,相似比為4:3;(3)B1C=

試題分析:(1)根據(jù)矩形的性質(zhì)可得∠A=∠B=∠C=∠ADC=90°,AB=CD,即得∠A=∠A1,∠B=∠A1DF=90°,CD=A1D,根據(jù)同角的余角相等可得∠A1DE=∠CDF,即可證得結(jié)論;
(2)△B1DG和△EA1G全等證法同(1);設(shè)FC=,則B1F=BF=,B1C=DC=1,根據(jù)勾股定理即可列方程求得x的值,從而求得△FCB1與△B1DG相似的相似比;
(3)設(shè),則有,在直角中,根據(jù)勾股定理列方程求解即可.
(1)全等.
∵四邊形ABCD是矩形,
所以∠A=∠B=∠C=∠ADC=90°,AB=CD,
由題意知:∠A=∠A1,∠B=∠A1DF=90°,CD=A1D,
所以∠A1=∠C=90°,∠CDF+∠EDF=90°,
所以∠A1DE=∠CDF,所以△EDA1≌△FDC(ASA);
(2)△B1DG和△EA1G全等.
△FCB1與△B1DG相似,設(shè)FC=,則B1F=BF=,B1C=DC=1,
所以,所以,
所以△FCB1與△B1DG相似,相似比為4:3;
(3)△FCB1與△B1DG全等.設(shè),則有,
在直角中,可得,
整理得,解得(另一解舍去),
所以,當(dāng)B1C=時,△FCB1與△B1DG全等.
點評:此類問題難度較大,在中考中比較常見,一般在壓軸題中出現(xiàn),需特別注意.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了測量旗桿AB的高度.甲同學(xué)畫出了示意圖1,并把測量結(jié)果記錄如下,BA⊥EA于A,DC⊥EA于C,CD=a,CA=b,CE=c;乙同學(xué)畫出了示意圖2,并把測量結(jié)果記錄如下,DE⊥AE于E,BA⊥AE于A,BA⊥CD于C,DE=m,AE=n,∠BDC=α.

(1)請你幫助甲同學(xué)計算旗桿AB的高度(用含a、b、c的式子表示);
(2)請你幫助乙同學(xué)計算旗桿AB的高度(用含m、n、α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,正方形ABCD的邊長為2,點E、F分別為邊AB、AD 的中點,點G是CF上的一點,使得3 CG =2 GF,則三角形BEG的面積為       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,小明在打網(wǎng)球時,使球恰好能打過網(wǎng),而且落在離網(wǎng)4米的位置上,則球拍擊球的高度h為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知△ABC∽△DEF,且相似比為k,則k的值為         。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點A為x軸上一點,坐標(biāo)為(4,0),點B、點C為y軸上兩點,點B的坐標(biāo)為(0,6),連接AB,過點C作x軸的平行線CD交AB于D,若,則點D的坐標(biāo)為      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,D、E分別是△ABC的邊AB、AC上的點,連接DE,要使△ADE∽△ACB,還需添加一個條件                      (只需寫一個).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=3,BC=4.動點P從點A出發(fā)沿AC向終點C運動,同時動點Q從點B出發(fā)沿BA向點A運動,到達(dá)A點后立刻以原來的速度沿AB返回.點P、Q運動速度均為每秒1個單位長度,當(dāng)點P到達(dá)點C時停止運動,點Q也同時停止.連接PQ,設(shè)運動時間為tt >0)秒.

(1)求線段AC的長度;
(2)當(dāng)點Q從點B向點A運動時(未到達(dá)A點),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)伴隨著P、Q兩點的運動,線段PQ的垂直平分線為l
①當(dāng)l經(jīng)過點A時,射線QPAD于點E,求AE的長;
②當(dāng)l經(jīng)過點B時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列語句正確的是( )
A.有一個角對應(yīng)相等的兩個直角三角形相似
B.如果兩個圖形位似,那么對應(yīng)線段平行或在同一條直線直線上
C.兩個矩形一定相似
D.如果將一個三角形的各邊長都擴大二倍,則其面積將擴大4倍

查看答案和解析>>

同步練習(xí)冊答案