已知拋物線y=3ax2+2bx+c
(1)若a=b=1,c=-1求該拋物線與x軸的交點(diǎn)坐標(biāo);
(2)若a=,c=2+b且拋物線在區(qū)間上的最小值是-3,求b的值;
(3)若a+b+c=1,是否存在實(shí)數(shù)x,使得相應(yīng)的y的值為1,請說明理由.
(1)該拋物線與x軸公共點(diǎn)的坐標(biāo)是:(﹣1,0)和(,0);
(2)b=3或b=;
(3)存在兩個(gè)不同實(shí)數(shù)x,使得相應(yīng)y=1.
解析試題分析:(1)直接將a=b=1,c=﹣1代入求出即可;
(2)利用當(dāng)x=﹣b<﹣2時(shí),即b>2,此時(shí)﹣3=(﹣2)2+2×(﹣2)b+b+2;當(dāng)x=﹣b>2時(shí),即b<﹣2,則有拋物線在x=2時(shí)取最小值為﹣3,此時(shí)﹣3=22+2×2b+b+2;當(dāng)﹣2≤﹣b≤2時(shí),即﹣2≤b≤2,則有拋物線在x=﹣b時(shí),取最小值為﹣3,分別求出符合題意的答案即可;
(3)由y=1得3ax2+2bx+c=1,則△=4b2﹣12a(c﹣1),求出其符號得出答案即可.
試題解析:(1)當(dāng)a=b=1,c=﹣1時(shí),拋物線為:y=3x2+2x﹣1,
∵方程3x2+2x﹣1=0的兩個(gè)根為:x1=﹣1,x2=.
∴該拋物線與x軸公共點(diǎn)的坐標(biāo)是:(﹣1,0)和(,0);
(2)a=,c﹣b=2,則拋物線可化為:y=x2+2bx+b+2,
其對稱軸為:x=﹣b,
當(dāng)x=﹣b<﹣2時(shí),即b>2,則有拋物線在x=﹣2時(shí)取最小值為﹣3,
此時(shí)﹣3=(﹣2)2+2×(﹣2)b+b+2,
解得:b=3,符合題意,
當(dāng)x=﹣b>2時(shí),即b<﹣2,則有拋物線在x=2時(shí)取最小值為﹣3,此時(shí)﹣3=22+2×2b+b+2,
解得:b=﹣,不合題意,舍去.
當(dāng)﹣2≤﹣b≤2時(shí),即﹣2≤b≤2,則有拋物線在x=﹣b時(shí),取最小值為﹣3,
此時(shí)﹣3=(﹣b)2+2×(﹣b)b+b+2,
化簡得:b2﹣b﹣5=0,
解得:b1=(不合題意,舍去),b2=.
綜上:b=3或b=;
(3)由y=1得3ax2+2bx+c=1,
△=4b2﹣12a(c﹣1),
=4b2﹣12a(﹣a﹣b),
=4b2+12ab+12a2,
=4(b2+3ab+3a2),
=4[(b+a)2+a2],
∵a≠0,△>0,
所以方程3ax2+2bx+c=1有兩個(gè)不相等實(shí)數(shù)根,
即存在兩個(gè)不同實(shí)數(shù)x,使得相應(yīng)y=1.
考點(diǎn):二次函數(shù)綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線與x軸交于A,B兩點(diǎn),對稱軸為直線,直線AD交拋物線于點(diǎn)D(2,3).
(1)求拋物線的解析式;
(2)已知點(diǎn)M為第三象限內(nèi)拋物線上的一動(dòng)點(diǎn),當(dāng)點(diǎn)M在什么位置時(shí)四邊形AMCO的面積最大?并求出最大值;
(3)當(dāng)四邊形AMCO面積最大時(shí),過點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線BC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10元/千克,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于18元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系式.當(dāng)銷售價(jià)為多少時(shí),每天的銷售利潤最大?最大利潤是多少?
(3)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中(O為坐標(biāo)原點(diǎn)),已知拋物線y=x2+bx+c過點(diǎn)A(4,0),B(1,﹣3).
(1)求b,c的值,并寫出該拋物線的對稱軸和頂點(diǎn)坐標(biāo);
(2)設(shè)拋物線的對稱軸為直線l,點(diǎn)P(m,n)是拋物線上在第一象限的點(diǎn),點(diǎn)E與點(diǎn)P關(guān)于直線l對稱,點(diǎn)E與點(diǎn)F關(guān)于y軸對稱,若四邊形OAPF的面積為48,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,設(shè)M是直線l上任意一點(diǎn),試判斷MP+MA是否存在最小值?若存在,求出這個(gè)最小值及相應(yīng)的點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線y=ax2+bx+c經(jīng)過A(﹣1,0)、B(2,0)、C(0,2)三點(diǎn).
(1)求這條拋物線的解析式;
(2)如圖一,點(diǎn)P是第一象限內(nèi)此拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖二,設(shè)線段AC的垂直平分線交x軸于點(diǎn)E,垂足為D,M為拋物線的頂點(diǎn),那么在直線DE上是否存在一點(diǎn)G,使△CMG的周長最。咳舸嬖,請求出點(diǎn)G的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知二次函數(shù)的圖象過A(2,0),B(0,-1)和C(4,5)三點(diǎn)。
(1)求二次函數(shù)的解析式;
(2)設(shè)二次函數(shù)的圖象與軸的另一個(gè)交點(diǎn)為D,求點(diǎn)D的坐標(biāo);
(3)在同一坐標(biāo)系中畫出直線,并寫出當(dāng)在什么范圍內(nèi)時(shí),一次函數(shù)的值大于二次函數(shù)的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣(m+n)x+mn(m>n)與x軸相交于A、B兩點(diǎn)(點(diǎn)A位于點(diǎn)B的右側(cè)),與y軸相交于點(diǎn)C.
(1)若m=2,n=1,求A、B兩點(diǎn)的坐標(biāo);
(2)若A、B兩點(diǎn)分別位于y軸的兩側(cè),C點(diǎn)坐標(biāo)是(0,﹣1),求∠ACB的大小;
(3)若m=2,△ABC是等腰三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為192m2, 求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com