【題目】已知△ABC是邊長(zhǎng)為4的等邊三角形,BC在x軸上,點(diǎn)D為BC的中點(diǎn),點(diǎn)A在第一象限內(nèi),AB與y軸的正半軸相交于點(diǎn)E,點(diǎn)B(-1,0),P是AC上的一個(gè)動(dòng)點(diǎn)(P與點(diǎn)A、C不重合)

(1)求點(diǎn)A、E的坐標(biāo);

(2)若y=求過點(diǎn)A、E,求拋物線的解析式。

(3)連結(jié)PB、PD,設(shè)L為△PBD的周長(zhǎng),當(dāng)L取最小值時(shí),求點(diǎn)P的坐標(biāo)及L的最小值,并判斷此時(shí)點(diǎn)P是否在(2)中所求的拋物線上,請(qǐng)充分說明你的判斷理由

【答案】1E0,

2y=

3)在

【解析】解:(1)連結(jié)AD,不難求得A12

OE=,得E0,

2)因?yàn)閽佄锞y=過點(diǎn)AE

由待定系數(shù)法得:c=,b=

拋物線的解析式為y=

3)大家記得這樣一個(gè)常識(shí)嗎?

牽牛從點(diǎn)A出發(fā),到河邊l喝水,再到點(diǎn)B處吃草,走哪條路徑最短?即確定l上的點(diǎn)P

方法是作點(diǎn)A關(guān)于l的對(duì)稱點(diǎn)A',連結(jié)A'Bl的交點(diǎn)P即為所求.

本題中的AC就是,B、D分別為出發(fā)點(diǎn)草地。

由引例并證明后,得先作點(diǎn)D關(guān)于AC的對(duì)稱點(diǎn)D',

連結(jié)BD'AC于點(diǎn)P,則PBPD的和取最小值,

△PBD的周長(zhǎng)L取最小值。

不難求得∠D'DC=30

DF=,DD'=2

求得點(diǎn)D'的坐標(biāo)為(4,

直線BD'的解析式為:x+

直線AC的解析式為:

求直線BD'AC的交點(diǎn)可得點(diǎn)P的坐標(biāo)()。

此時(shí)BD'==/span>=2

所以△PBD的最小周長(zhǎng)L2+2

把點(diǎn)P的坐標(biāo)代入y=成立,所以此時(shí)點(diǎn)P在拋物線上。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一居民樓底部B與山腳P位于同一水平線上,小李在P處測(cè)得居民樓頂A的仰角為60°,然后他從P處沿坡角為45°的山坡向上走到C處,這時(shí),PC=30 m,點(diǎn)C與點(diǎn)A恰好在同一水平線上,點(diǎn)A、BP、C在同一平面內(nèi).

(1)求居民樓AB的高度;

(2)求C、A之間的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,BC的延長(zhǎng)線于⊙O的切線AF交于點(diǎn)F.

(1)求證:∠ABC=2∠CAF;

(2)若AC=2,CE:EB=1:4,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】青海日?qǐng)?bào)訊:十五年免費(fèi)教育政策已覆蓋我省所有貧困家庭,首批惠及學(xué)生近86.1萬人.將86.1萬用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:3a22a3+a5--2a23÷a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面各組函數(shù)中為相同函數(shù)的是( 。
A.f(x)= , g(x)=x﹣1
B.f(x)= , g(x)=
C.f(x)=(2 , g(x)=
D.f(x)= , g(x)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡(jiǎn):﹣|a+c|+﹣|﹣2b|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在左邊托盤A(固定)中放置一個(gè)重物,在右邊托盤B(可左右移動(dòng))中放置一定質(zhì)量的砝碼,可使得儀器左右平衡,改變托盤B與支撐點(diǎn)M的距離,記錄相應(yīng)的托盤B中的砝碼質(zhì)量,得到下表:

(1)把上表中(x,y)的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在如圖所示的平面直角坐標(biāo)系中描出其余的點(diǎn),并用一條光滑曲線起來.觀察所畫的圖像,猜想y與x之間的函數(shù)關(guān)系,求出該函數(shù)關(guān)系式;

(2)當(dāng)托盤B向左移動(dòng)(不能超過點(diǎn)M)時(shí),應(yīng)往托盤B中添加砝碼還是減少砝碼?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,點(diǎn)E是射線CB上的一個(gè)動(dòng)點(diǎn),把△DCE沿DE折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′.

(1)若點(diǎn)C′剛好落在對(duì)角線BD上時(shí),BC′=;
(2)當(dāng)B C′∥DE時(shí),求CE的長(zhǎng);
(3)若點(diǎn)C′剛好落在線段AD的垂直平分線上時(shí),求CE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案