【題目】如圖,已知在ABC中,B=90°,AB=8cm,BC=6cm,點P從點A開始沿ABC的邊做逆時針運動,且速度為每秒1cm;點Q從點B開始沿ABC的邊做逆時針運動,且速度為每秒2cm,他們同時出發(fā),設(shè)運動時間為t秒.

(1)出發(fā)2秒后,P,Q兩點間的距離為多少cm?

(2)在運動過程中,PQB能形成等腰三角形嗎?若能,請求出幾秒后第一次形成等腰三角形;若不能,則說明理由.

(3)出發(fā)幾秒后,線段PQ第一次把ABC的周長分成相等兩部分?

【答案】(1)cm;(2)在運動過程中,PQB能形成等腰三角形,出發(fā)后秒后第一次形成等腰三角形.(3)4.

【解析

試題分析:(1)求出AP、BP、BQ,根據(jù)勾股定理求出PQ即可.

(2)根據(jù)等腰直角三角形得出BP=BQ,代入得出方程,求出方程的解即可.

(3)根據(jù)周長相等得出10+t+(6-2t)=8-t+2t,求出即可.

試題解析:

(1)出發(fā)2秒后AP=2cm,

BP=8-2=6(cm),

BQ=2×2=4(cm),

在RtPQB中,由勾股定理得:(cm)

即出發(fā)2秒后,求PQ的長為cm

(2)在運動過程中,PQB能形成等腰三角形,

AP=t,BP=AB-AP=8-t;BQ=2t

PB=BQ:8-t=2t

解得t=),

即出發(fā)后秒后第一次形成等腰三角形.

(3)RtABC中由勾股定理得:(cm);

AP=t,BP=AB-AP=8-t,BQ=2t,QC=6-2t,

線段PQ第一次把直角三角形周長分成相等的兩部分,

由周長相等得:AC+AP+QC=PB+BQ

10+t+(6-2t)=8-t+2t

解得t=4(cm)

即從出發(fā)4秒后,線段PQ第一次把直角三角形周長分成相等的兩部分.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點O是邊BC的中點,連接DO并延長,交AB延長線于點E,連接BDEC

(1)求證:四邊形BECD是平行四邊形;

(2)若∠A=50°,則當∠BOD= ______ °時,四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形中,對角線、交于點.將直線繞點順時針旋轉(zhuǎn)分別交、于點、

)在旋轉(zhuǎn)過程中,線段的數(shù)量關(guān)系是__________.

)如圖,若,當旋轉(zhuǎn)角至少為__________時,四邊形是平行四邊形,并證明此時的四邊形是是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上, 老師要求同學們利用三角板畫兩條平行線.老師說苗苗和小華兩位同學畫法都是正確的,兩位同學的畫法如下:

苗苗的畫法:

①將含30°角的三角尺的最長邊與直線a重合,另一塊三角尺最長邊與含30°角的三角尺的最短邊緊貼;

②將含30°角的三角尺沿貼合邊平移一段距離,畫出最長邊所在直線b,則b//a.

小華的畫法:

①將含30°角三角尺的最長邊與直線a重合,用虛線做出一條最短邊所在直線;

②再次將含30°角三角尺的最短邊與虛線重合,畫出最長邊所在直線b,則b//a.

請在苗苗和小華兩位同學畫平行線的方法中選出你喜歡的一種,并寫出這種畫圖的依據(jù).

答:我喜歡__________同學的畫法,畫圖的依據(jù)是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+m+1交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列三個判斷中:
①當x>0時,y>0;
②若a=﹣1,則b=4;
③拋物線上有兩點P(x1 , y1)和Q(x2 , y2),若x1<1<x2 , 且x1+x2>2,則y1>y2;正確的是( 。

A.①
B.②
C.③
D.①②③都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A,B的坐標分別為(2,m),(2,3m﹣1),若線段AB與拋物線y=x2﹣2x+2相交,則m的取值范圍為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點O是直線AB上的一點,∠COE=90°,OF是∠AOE的平分線.

(1)當點C,E,F(xiàn)在直線AB的同側(cè)時(如圖①所示),試說明∠BOE=2∠COF.

(2)當點C與點E,F(xiàn)在直線AB的兩側(cè)時(如圖②所示),(1)中的結(jié)論是否仍然成立?請給出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項,得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯誤變形的個數(shù)是(  )個

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級(1)班體育委員統(tǒng)計了全班同學60秒跳繩次數(shù),并列出了下面的不完整頻數(shù)分布表和不完整的頻數(shù)分布直方圖.根據(jù)圖表中的信息解答問題

組別

跳繩次數(shù)

頻數(shù)

A

60≤x<80

2

B

80≤x<100

6

C

100≤x<120

18

D

120≤x<140

12

E

140≤x<160

a

F

160≤x<180

3

G

180≤x<200

1

合計

50

(1)求a的值;

(2)求跳繩次數(shù)x120≤x<180范圍內(nèi)的學生的人數(shù);

(3)補全頻數(shù)分布直方圖,并指出組距與組數(shù)分別是多少?

查看答案和解析>>

同步練習冊答案