【題目】直線y2被拋物線yx23x+2截得的線段長為_____

【答案】3

【解析】

求得直線與拋物線的交點(diǎn)坐標(biāo),從而求得截得的線段的長即可.

解:令y2得:x23x+22

解得:x0x3,

所以交點(diǎn)坐標(biāo)為(0,2)和(3,2),

所以截得的線段長為303,

故答案為:3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.

(1)若直線y=mx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;

(2)在拋物線的對稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);

(3)設(shè)點(diǎn)P為拋物線的對稱軸x=﹣1上的一個動點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解七年級同學(xué)每天的睡眠時間,在七年級的10個班中,每班抽5名學(xué)生做調(diào)查,這一調(diào)查中,總體是指_____,樣本是指_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是( 。
A.a2+a3=a5
B.a2a3=a6
C.(a23=a5
D.a5÷a2=a3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題是( .

A.兩條對角線垂直且相等的四邊形是正方形

B.兩條對角線互相垂直的四邊形是菱形

C.兩條對角線互相平分且相等的四邊形是矩形

D.一組對邊平行,另一組對邊相等的四邊形是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題
(1)如圖1,△ABC和△E中,AB=CB,DB=EB,∠ABC=∠DBE=90°,D點(diǎn)在AB上,連接AE、DC.則AE和CD有什么數(shù)量和位置關(guān)系?
(2)類比: 若將圖1中的△DBE繞點(diǎn)B逆時針旋轉(zhuǎn)一個銳角,如圖2所示,問圖2中的線段AE,CD之間的數(shù)量和位置關(guān)系還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點(diǎn)P、Q同時從原點(diǎn)出發(fā),分別作勻速運(yùn)動,其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動,速度為每秒1個單位;點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動,當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時,另一點(diǎn)也停止運(yùn)動.設(shè)P從出發(fā)起運(yùn)動了t秒.

(1)如果點(diǎn)Q的速度為每秒2個單位,①試分別寫出這時點(diǎn)Q在OC上或在CB上時的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);

②求t為何值時,PQ∥OC?

(2)如果點(diǎn)P與點(diǎn)Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時點(diǎn)Q所經(jīng)過的路程和它的速度;

②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC與△ADE關(guān)于直線MN對稱,BC與DE的交點(diǎn)F在直線MN上.
(1)圖中點(diǎn)B的對稱點(diǎn)是 , 點(diǎn)C的對稱點(diǎn)是
(2)寫出圖中相等的一對線段是 , 相等的一對角是;
(3)寫出圖中全等的一對三角形是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O的半徑為5OP7,則點(diǎn)P在( 。

A.O內(nèi)B.OC.OD.不確定

查看答案和解析>>

同步練習(xí)冊答案