精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知拋物線(a≠0)的對稱軸為直線x=﹣1,且拋物線經過A(1,0),C(0,3)兩點,與x軸交于點B.

(1)若直線y=mx+n經過B、C兩點,求直線BC和拋物線的解析式;

(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;

(3)設點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.

【答案】(1)y=x+3;(2)M(﹣1,2);(3)P(﹣1,﹣2)或(﹣1,4)或(﹣1, 或(﹣1,).

【解析】(1)依題意得:,解得:,∴拋物線解析式為

∵對稱軸為x=﹣1,且拋物線經過A(1,0),∴把B(﹣3,0)、C(0,3)分別代入直線y=mx+n,得,解得:,∴直線y=mx+n的解析式為y=x+3;

(2)設直線BC與對稱軸x=﹣1的交點為M,則此時MA+MC的值最。

把x=﹣1代入直線y=x+3得,y=2,∴M(﹣1,2),即當點M到點A的距離與到點C的距離之和最小時M的坐標為(﹣1,2);

(3)設P(﹣1,t),又∵B(﹣3,0),C(0,3),∴=18,==,==;

①若點B為直角頂點,則,即:解之得:t=﹣2;

②若點C為直角頂點,則即:,解之得:t=4

③若點P為直角頂點,則,即:,解之得:,;

綜上所述P的坐標為(﹣1,﹣2)或(﹣1,4)或(﹣1, 或(﹣1,).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,ABCD,DCE80°,則BEF=( )

A. 120° B. 110° C. 100° D. 80°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OCDE的頂點C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線與y軸相交于點A,拋物線的對稱軸與x軸相交于點B,與CD交于點K.

(1)將矩形OCDE沿AB折疊,點O恰好落在邊CD上的點F處.

①點B的坐標為( 、 ),BK的長是 ,CK的長是 ;

②求點F的坐標;

③請直接寫出拋物線的函數表達式;

(2)將矩形OCDE沿著經過點E的直線折疊,點O恰好落在邊CD上的點G處,連接OG,折痕與OG相交于點H,點M是線段EH上的一個動點(不與點H重合),連接MG,MO,過點G作GP⊥OM于點P,交EH于點N,連接ON,點M從點E開始沿線段EH向點H運動,至與點N重合時停止,△MOG和△NOG的面積分別表示為S1和S2,在點M的運動過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個值.

溫馨提示:考生可以根據題意,在備用圖中補充圖形,以便作答.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,OA⊥OC,OB⊥OD,下面結論中,其中說法正確的是(  )
①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的方程x2axa50,若該方程的一個根為1,求a的值及該方程的另一根.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】化簡與分解因式
(1)化簡:(
(2)分解因式:(x﹣1)(x﹣3)+1.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,△ABC和△DBE均為等腰直角三角形.
(1)求證:AD=CE;
(2)求證:AD和CE垂直.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線AB與CD相交于點O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD,

(1)圖中除直角外,還有相等的角嗎?請寫出兩對:①;②
(2)如果∠AOD=40°,則①∠BOC=;②OP是∠BOC的平分線,所以∠COP=;
③求∠BOF的度數

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】直線y2被拋物線yx23x+2截得的線段長為_____

查看答案和解析>>

同步練習冊答案