【題目】如圖,△ABC中,AD是高,AE、BF是角平分線(xiàn),它們相交于點(diǎn)O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度數(shù)。
【答案】
解:∵∠A=50°,∠C=60°
∴∠ABC=180°-50°-60°=70°,
又∵AD是高,
∴∠ADC=90°,
∴∠DAC=180°-90°-∠C=30°,
∵AE、BF是角平分線(xiàn),
∴∠CBF=∠ABF=35°,∠EAF=25°,
∴∠DAE=∠DAC-∠EAF=5°,
∠AFB=∠C+∠CBF=60°+35°=95°,
∴∠BOA=∠EAF+∠AFB=25°+95°=120°,
∴∠DAC=30°,∠BOA=120°.
故∠DAE=5°,∠BOA=120°.
【解析】先利用三角形內(nèi)角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根據(jù)角平分線(xiàn)定義可求∠CBF、∠EAF,可得∠DAE的度數(shù);然后利用三角形外角性質(zhì),可先求∠AFB,再次利用三角形外角性質(zhì),容易求出∠BOA.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O在直線(xiàn)AB上,OE、OD分別是∠AOC、∠BOC的平分線(xiàn).
(1)∠AOE的補(bǔ)角是∠____;∠BOD的余角是______;
(2)若∠AOC=118°,求∠COD的度數(shù);
(3)射線(xiàn)OD與OE之間有什么特殊的位置關(guān)系?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知代數(shù)式,當(dāng)時(shí),該代數(shù)式的值為-1.
(1)求的值。
(2)已知當(dāng)時(shí),該代數(shù)式的值為-1,求的值。
(3)已知當(dāng)時(shí),該代數(shù)式的值為9,試求當(dāng)時(shí)該代數(shù)式的值。
(4)在第(3)小題已知條件下,若有成立,試比較與的大小。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,在△ABC中,點(diǎn)O是∠ABC和∠ACB的平分線(xiàn)的交點(diǎn),若∠A=α,則∠BOC=90°+;如圖②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,則∠BOC=__________(用α表示);
(2)如圖③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,請(qǐng)猜想∠BOC=__________(用α表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對(duì)角線(xiàn)BD平分∠ABC,P是BD上一點(diǎn),過(guò)點(diǎn)P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)當(dāng)我們利用兩種不同的方法計(jì)算同一圖形的面積時(shí),可以得到一個(gè)等式.例如,由圖①,可得等式:(a+2b)(a+b)=a2+3ab+2b2.
(1)由圖②,可得等式:__________________________;
(2)利用(1)中所得到的結(jié)論,解決下面的問(wèn)題:
已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)利用圖③中的紙片(足夠多),畫(huà)出一種拼圖,使該拼圖可用來(lái)驗(yàn)證等式:2a2+5ab+2b2=(2a+b)(a+2b);
(4)琪琪用2張邊長(zhǎng)為a的正方形,3張邊長(zhǎng)為b的正方形,5張邊長(zhǎng)分別為a,b的長(zhǎng)方形紙片重新拼出一個(gè)長(zhǎng)方形,那么該長(zhǎng)方形較長(zhǎng)的一條邊長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在式子“2×( )﹣6×( )=12”中括號(hào)內(nèi)填入一個(gè)相同的數(shù),使得等式成立,這個(gè)數(shù)是: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn).我們將從一個(gè)格點(diǎn)移動(dòng)到與之相距的另一個(gè)格點(diǎn)的運(yùn)動(dòng)稱(chēng)為一次跳馬變換.
(1)在圖1中畫(huà)出邊長(zhǎng)為的正方形,使它的頂點(diǎn)在網(wǎng)格的格點(diǎn)上.
(2)在圖2中有一只電子小馬從格點(diǎn)出發(fā),經(jīng)過(guò)跳馬變換到達(dá)與其相對(duì)的格點(diǎn),則最少需要跳馬變換的次數(shù)是 次.
(3)如圖3,在的正方形網(wǎng)格中,一只電子小馬從格點(diǎn)經(jīng)過(guò)若干次跳馬變換到達(dá)與其相對(duì)的格點(diǎn),則它跳過(guò)的最短路程為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com