【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)“我最喜愛(ài)的體育項(xiàng)目”進(jìn)行了一次調(diào)查統(tǒng)計(jì),下面是他通過(guò)收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息,解答以下問(wèn)題:
(1)該班共有 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“乒乓球”部分所對(duì)應(yīng)的圓心角度數(shù)為 ;
(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動(dòng),有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹(shù)狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
【答案】(1)50;(2)答案見(jiàn)解析;(3)115.2°;(4).
【解析】
(1)根據(jù)統(tǒng)計(jì)圖數(shù)據(jù),直接求解,即可;
(2)先求出足球項(xiàng)目和其他項(xiàng)目的人數(shù),再補(bǔ)全條形統(tǒng)計(jì)圖,即可;
(3)由“乒乓球”部分所對(duì)應(yīng)的圓心角度數(shù)=360°×“乒乓球”部分所占的百分比,即可求解;
(4)先畫(huà)出樹(shù)狀圖,再根據(jù)概率公式,即可得到答案.
(1)由題意得:該班的總?cè)藬?shù)=15÷30%=50(名),
故答案為:50;
(2)足球項(xiàng)目的人數(shù)=50×18%=9(名),其它項(xiàng)目的人數(shù)=50﹣15﹣9﹣16=10(名),
補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:
(3)“乒乓球”部分所對(duì)應(yīng)的圓心角度數(shù)=360°115.2°.
故答案為:115.2°;
(4)畫(huà)樹(shù)狀圖如圖:
由圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,
∴P(恰好選出一男一女).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一坡角40°,坡面長(zhǎng)AC=100m的小山頂上安裝了一電信基站AB,在山底的C處,測(cè)得塔頂仰角為60°,求塔的高AB.(精確到0.1m)(以下供參考:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在四邊形ABCD中∠A=∠ABC=90°,點(diǎn)E是CD的中點(diǎn),△ABD與 △EBD關(guān)于直線(xiàn)BD對(duì)稱(chēng),,.
(1)求點(diǎn)A和點(diǎn)E之間的距離;
(2)聯(lián)結(jié)AC交BE于點(diǎn)F,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線(xiàn)a∥b,頂點(diǎn)C在直線(xiàn)b上,直線(xiàn)a交AB于點(diǎn)D,交AC于點(diǎn)E,若∠1=145°,則∠2的度數(shù)是( )
A.30°B.35°C.40°D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,CD=3cm,BC=4cm,連接BD,并過(guò)點(diǎn)C作CN⊥BD,垂足為N,直線(xiàn)l垂直BC,分別交BD、BC于點(diǎn)P、Q.直線(xiàn)l從AB出發(fā),以每秒1cm的速度沿BC方向勻速運(yùn)動(dòng)到CD為止;點(diǎn)M沿線(xiàn)段DA以每秒1cm的速度由點(diǎn)D向點(diǎn)A勻速運(yùn)動(dòng),到點(diǎn)A為止,直線(xiàn)1與點(diǎn)M同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)線(xiàn)段CN= ;
(2)連接PM和QN,當(dāng)四邊形MPQN為平行四邊形時(shí),求t的值;
(3)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí)△PMN的面積取得最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,作關(guān)于直線(xiàn)的軸對(duì)稱(chēng)圖形點(diǎn)是的中點(diǎn),若點(diǎn)在同一直線(xiàn)上,則的長(zhǎng)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,內(nèi)接于分別是和所對(duì)弧的中點(diǎn),弦分別交于點(diǎn),連結(jié)
(1)求證:是等邊三角形.
(2)若
①如圖2,當(dāng)為的直徑時(shí),求的長(zhǎng).
②當(dāng)將的面積分成了的兩部分時(shí),求的長(zhǎng).
(3)連結(jié)交于點(diǎn),若:則的值為_______. (請(qǐng)直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CE是□ABCD的邊AB的垂直平分線(xiàn),垂足為點(diǎn)O,CE與DA的延長(zhǎng)線(xiàn)交于點(diǎn)E、連接AC,BE,DO,DO與AC交于點(diǎn)F,則下列結(jié)論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四邊形AFOE:S△COD=2:3.其中正確的結(jié)論有( 。﹤(gè).
A. 1B. 2C. 3D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com