【題目】在一個不透明的盒子中放有三張卡片,每張卡片上寫有1個實數(shù),分別為12,3.(卡片除了實數(shù)不同外,其余均相同)

1)從盒子中隨機抽取一張卡片,請直接寫出卡片上的實數(shù)是2的概率_______

2)先從盒子中隨機抽取一張卡片,將卡片上的實數(shù)作為點P的橫坐標,卡片不放回,再隨機抽取一張卡片,將卡片上的實數(shù)作為點P的縱坐標,兩次抽取的卡片上的實數(shù)分別作為點P的橫縱坐標.請你用列表法或樹狀圖法,求出點P在反比例函數(shù)上的概率.

【答案】1;(2

【解析】

1)根據(jù)題意可以直接寫出卡片上的實數(shù)是2的概率;

2)根據(jù)題意可以寫出所有的可能性,從而可以得到點在反比例函數(shù)上的概率.

解:(1)由題意可得,

卡片上的實數(shù)是2的概率是;

2)列表如下:

橫坐標 縱坐標

1

2

3

1

1,2

1,3

2

21

2,3

3

31

32

由列表可知,共有6種情況,且每種情況發(fā)生的可能性相同,其中滿足條件的情況有兩種,分別為(2,1)、(1,2),

所以點P在反比例函數(shù)上的概率

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個問題解決往往經(jīng)歷發(fā)現(xiàn)猜想——探索歸納——問題解決的過程,下面結(jié)合一道幾何題來體驗一下.

(發(fā)現(xiàn)猜想)(1)如圖①,已知∠AOB70°,∠AOD100°,OC為∠BOD的角平分線,則∠AOC的度數(shù)為 ;.

(探索歸納)(2)如圖①,∠AOBm,∠AODn,OC為∠BOD的角平分線. 猜想∠AOC的度數(shù)(用含m、n的代數(shù)式表示),并說明理由.

(問題解決)(3)如圖②,若∠AOB20°,∠AOC90°,∠AOD120°.若射線OB繞點O以每秒20°逆時針旋轉(zhuǎn),射線OC繞點O以每秒10°順時針旋轉(zhuǎn),射線OD繞點O每秒30°順時針旋轉(zhuǎn),三條射線同時旋轉(zhuǎn),當一條射線與直線OA重合時,三條射線同時停止運動. 運動幾秒時,其中一條射線是另外兩條射線夾角的角平分線?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為緩解交通壓力,建設美麗遵義,市政府加快了風新快線的建設.如圖,AB兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC8千米,∠A45°,∠B30°

1)開通隧道前,汽車從A地到B地大約要走多少千米?

2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.414,≈1.732

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學準備開展陽光體育活動,決定開設籃球、足球、乒乓球和羽毛球四種項目的活動,為了了解學生對這四項活動的喜歡情況,隨機調(diào)查了該校a名學生最喜歡的一種項目(每名學生必選且只能選擇這四項活動中的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計圖:學生最喜歡的活動項目的人數(shù)條形統(tǒng)計圖學生最喜歡的活動項目的人數(shù)扇形統(tǒng)計圖

根據(jù)以上統(tǒng)計圖提供的信息,解答下列問題:

1a=_____,b=______c=______;

2)請根據(jù)以上信息直接在答題卡中補全條形統(tǒng)計圖;

3)根據(jù)抽樣調(diào)查結(jié)果,請你估計該校1000名學生中有多少名學生最喜愛打籃球.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P(,)和直線y=kx+b,則點P到直線y=kx+b距離證明可用公式d= 計算.

例如:求點P(﹣1,2)到直線y=3x+7的距離.

解:因為直線y=3x+7,其中k=3,b=7.

所以點P(﹣1,2)到直線y=3x+7的距離為:d== = =

根據(jù)以上材料,解答下列問題:

(1)求點P(1,﹣1)到直線y=x﹣1的距離;

(2)已知⊙Q的圓心Q坐標為(0,5),半徑r2,判斷⊙Q與直線y=x+9的位置關系并說明理由;

(3)已知直線y=﹣2x+4y=﹣2x﹣6平行,求這兩條直線之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,射線從與射線重合的位置開始,繞點按順時針方向旋轉(zhuǎn),與射線重合時就停止旋轉(zhuǎn),射線與線段相交于點,點是線段的中點.

1)求線段的長;

2)①當點與點、點不重合時,過點于點于點,連接,,在射線旋轉(zhuǎn)的過程中,的大小是否發(fā)生變化?若不變,求的度數(shù);若變化,請說明理由.

②在①的條件下,連接,直接寫出面積的最小值____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校隨機抽取部分學生就“你是否喜歡網(wǎng)課”進行問卷調(diào)查,并將調(diào)查結(jié)果進行統(tǒng)計后,繪制成如下統(tǒng)計表和扇形統(tǒng)計圖.

調(diào)查結(jié)果統(tǒng)計表

1)在統(tǒng)計表中,a   b   ;

2)求出扇形統(tǒng)計圖中“喜歡”網(wǎng)課所對應扇形的圓心角度數(shù);

3)已知該校共有2000名學生,試估計該校“非常喜歡”網(wǎng)課的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形ABCD中,O是AC與BD的交點,過點O的直線EF與AB,CD的延長線分別交于點E,F.

(1)求證:△BOE≌△DOF;

(2)當EF與AC滿足什么條件時,四邊形AECF是菱形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近期,某國遭遇了近年來最大的經(jīng)濟危機,導致該國股市大幅震蕩,昨天某支股票累計賣出的數(shù)量和交易時間之間的關系如圖中虛線所示,累計買入的數(shù)量和交易時間之間的關系如圖中實線所示,其中點A是實線和虛線的交點,點CBE的中點,CD與橫軸平行,則下列關于昨天該股票描述正確的是( 。

A.交易時間在3.5h時累計賣出的數(shù)量為12萬手

B.交易時間在1.4h時累計賣出和累計買入的數(shù)量相等

C.累計賣出的數(shù)量和累計買入的數(shù)量相差1萬手的時刻有5

D.從點A對應的時刻到點C對應的時刻,平均每小時累計賣出的數(shù)量小于買入的數(shù)量

查看答案和解析>>

同步練習冊答案