下列幾何體的主視圖與其他三個不同的是(  )

 

A.

B.

C.

D.

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


已知甲、乙為兩把不同刻度的直尺,且同一把直尺的刻度之間距離相等,小洋同學(xué)將此兩把直尺緊貼,并將兩直尺上的刻度0彼此對準(zhǔn)后,發(fā)現(xiàn)甲尺的刻度36會對準(zhǔn)乙尺的刻度48,如圖所示。若今將甲尺向右平移且平移過程中兩把直尺維持緊貼,使得甲尺的刻度0會對準(zhǔn)乙尺的刻度4,如圖(九)所示,則此時甲尺的刻度21會對準(zhǔn)乙尺的哪一個刻度?(  ).

(A) 24   (B) 28   (C) 31   (D) 32

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


    問題提出

如圖①,已知直線l與線段AB平行,試只用直尺作出AB的中點.

初步探索

如圖②,在直線l的上方取一個點E,連接EA、EB,分別與l交于點M、N,連接MB、NA,交于點D,再連接ED并延長交AB于點C,則C就是線段AB 的中點.

推理驗證

利用圖形相似的知識,我們可以推理驗證ACCB

(1)若線段a、b、c、d長度均不為0,則由下列比例式中,一定可以得出bd的是()

A.

B.

C.

D.

(2)由MNAB,可以推出△EFN∽△ECB,△EMN∽△EAB,△MND∽△BAD

FND∽△CAD

     所以,有

         所以,ACCB

拓展研究

如圖③,△ABC中,DBC的中點,點PAB上.

(3)在圖③中只用直尺作直線lBC

(4)求證:lBC

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在Rt△ABC中,∠ABC= 90°,以AB為直徑的⊙O與AC邊交與點D.過D作⊙O的切線交BC與點E.連接OE.   

    (1)證明:OE∥AC;

    (2)①當(dāng)∠BAC=     °時,四邊形ODEB是正方形;

  ②當(dāng)∠BAC=     °時,AD=3DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在0,﹣2,5,,﹣0.3中,負(fù)數(shù)的個數(shù)是( 。

 

A.

1

B.

2

C.

3

D.

4

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,四邊形ABCD中,∠C=50°,∠B=∠D=90°,E、F分別是BC、DC上的點,當(dāng)△AEF的周長最小時,∠EAF的度數(shù)為(  )

 

A.

50°

B.

60°

C.

70°

D.

80°

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在圓心角為90°的扇形OAB中,半徑OA=2cm,C為的中點,D、E分別是OA、OB的中點,則圖中陰影部分的面積為      cm2

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖3,表示的點在數(shù)軸上表示時,所在哪兩個字母之間( 。

A.C與D      B.A與B      C.A與C      D.B與C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點C作CF平行于BA交PQ于點F,連接AF.

(1)求證:△AED≌△CFD;

(2)求證:四邊形AECF是菱形.

(3)若AD=3,AE=5,則菱形AECF的面積是多少?

 

查看答案和解析>>

同步練習(xí)冊答案