【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象開(kāi)口向上,對(duì)稱(chēng)軸為直線x=1,圖象經(jīng)過(guò)(3,0),下列結(jié)論中,正確的一項(xiàng)是(
A.abc<0
B.2a+b<0
C.a﹣b+c<0
D.4ac﹣b2<0

【答案】D
【解析】解:A、根據(jù)圖示知,拋物線開(kāi)口方向向上,則a>0. 拋物線的對(duì)稱(chēng)軸x=﹣ =1>0,則b<0.
拋物線與y軸交與負(fù)半軸,則c<0,
所以abc>0.
故A選項(xiàng)錯(cuò)誤;
B、∵x=﹣ =1,
∴b=﹣2a,
∴2a+b=0.
故B選項(xiàng)錯(cuò)誤;
C、∵對(duì)稱(chēng)軸為直線x=1,圖象經(jīng)過(guò)(3,0),
∴該拋物線與x軸的另一交點(diǎn)的坐標(biāo)是(﹣1,0),
∴當(dāng)x=﹣1時(shí),y=0,即a﹣b+c=0.
故C選項(xiàng)錯(cuò)誤;
D、根據(jù)圖示知,該拋物線與x軸有兩個(gè)不同的交點(diǎn),則△=b2﹣4ac>0,則4ac﹣b2<0.
故D選項(xiàng)正確;
故選D.
由拋物線的開(kāi)口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱(chēng)軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副直角三角尺如圖放置,已知AE∥BC,則∠AFD的度數(shù)是(
A.45°
B.50°
C.60°
D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直角△ABC中,∠C=90°,AC=8,BC=6,兩等圓⊙A,⊙B外切,那么圖中兩個(gè)扇形(陰影部分)的面積是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小敏家廚房一墻角處有一自來(lái)水管,裝修時(shí)為了美觀,準(zhǔn)備用木板從AB處將水管密封起來(lái),互相垂直的兩墻面與水管分別相切于D,E兩點(diǎn),經(jīng)測(cè)量AD=10cm,BE=15cm, 則該自來(lái)水管的半徑為( )cm.

A.5
B.10
C.6
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,2,3分別以△ABC的AB和AC為邊向△ABC外作正三角形(等邊三角形)、正四邊形(正方形)、正五邊形,BE和CD相交于點(diǎn)O.

(1)在圖1中,求證:△ABE≌△ADC.
(2)由(1)證得△ABE≌△ADC,由此可推得在圖1中∠BOC=120°,請(qǐng)你探索在圖2中,∠BOC的度數(shù),并說(shuō)明理由或?qū)懗鲎C明過(guò)程.
(3)填空:在上述(1)(2)的基礎(chǔ)上可得在圖3中∠BOC=(填寫(xiě)度數(shù)).
(4)由此推廣到一般情形(如圖4),分別以△ABC的AB和AC為邊向△ABC外作正n邊形,BE和CD仍相交于點(diǎn)O,猜想得∠BOC的度數(shù)為(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一樓房AB后有一假山,其斜坡CD坡比為1: ,山坡坡面上點(diǎn)E處有一休息亭,測(cè)得假山坡腳C與樓房水平距離BC=6米,與亭子距離CE=20米,小麗從樓房頂測(cè)得點(diǎn)E的俯角為45°.
(1)求點(diǎn)E距水平面BC的高度;
(2)求樓房AB的高.(結(jié)果精確到0.1米,參考數(shù)據(jù) ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,則關(guān)于x的一元一次方程ax2+bx+c=2(a≠0)的解為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC,∠C=90°,點(diǎn)D為AB上的一點(diǎn),以AD為直徑的⊙O與BC相切于點(diǎn)E,連接AE.
(1)求證:AE平分∠BAC;
(2)若AC=8,OB=18,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,連接CD.過(guò)點(diǎn)C作CE⊥DB,垂足為E,直線AB與CE相交于F點(diǎn).
(1)求證:CF為⊙O的切線;
(2)當(dāng)BF=5,sinF= 時(shí),求BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案