【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對(duì)稱(chēng)軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是拋物線上兩點(diǎn),則y1<y2其中結(jié)論正確的是( )
A.①②
B.②③
C.②④
D.①③④
【答案】C
【解析】解:∵拋物線開(kāi)口向下,
∴a<0,
∵拋物線的對(duì)稱(chēng)軸為直線x=﹣ =1,
∴b=﹣2a>0,
∵拋物線與y軸的交點(diǎn)在x軸上方,
∴c>0,
∴abc<0,所以①錯(cuò)誤;
∵b=﹣2a,
∴2a+b=0,所以②正確;
∵拋物線與x軸的一個(gè)交點(diǎn)為(﹣1,0),拋物線的對(duì)稱(chēng)軸為直線x=1,
∴拋物線與x軸的另一個(gè)交點(diǎn)為(3,0),
∴當(dāng)x=2時(shí),y>0,
∴4a+2b+c>0,所以③錯(cuò)誤;
∵點(diǎn)(﹣ )到對(duì)稱(chēng)軸的距離比點(diǎn)( )對(duì)稱(chēng)軸的距離遠(yuǎn),
∴y1<y2 , 所以④正確.
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí),掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC是等邊三角形.
(1)如圖,點(diǎn)D在AB邊上,點(diǎn)E在AC邊上,BD=CE,BE與CD交于點(diǎn)F.試判斷BF與CF的數(shù)量關(guān)系,并加以證明;
(2)點(diǎn)D是AB邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)E是AC邊上的一個(gè)動(dòng)點(diǎn),且BD=CE,BE與CD交于點(diǎn)F.若△BFD是等腰三角形,求∠FBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+ =0有實(shí)數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=x2+2x+ 的圖象向下平移9個(gè)單位,求平移后的圖象的表達(dá)式;
(3)在(2)的條件下,平移后的二次函數(shù)的圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),直線y=kx+b(k>0)過(guò)點(diǎn)B,且與拋物線的另一個(gè)交點(diǎn)為C,直線BC上方的拋物線與線段BC組成新的圖象,當(dāng)此新圖象的最小值大于﹣5時(shí),求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y1=﹣ x+1與x軸交于點(diǎn)A,與直線y2=﹣ x交于點(diǎn)B.
(1)求△AOB的面積;
(2)求y1>y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AC=BC,點(diǎn)D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分線CF于點(diǎn)F.
(1)求證:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù) y=kx+b 的圖象經(jīng)過(guò)點(diǎn)(﹣1,1)和點(diǎn)(1,﹣5)
(1)求一次函數(shù)的表達(dá)式;
(2)此函數(shù)與 x 軸的交點(diǎn)是 A,與 y 軸的交點(diǎn)是 B,求△AOB 的面積;
(3)求此函數(shù)與直線 y=2x+4 的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣為了落實(shí)中央的“強(qiáng)基惠民工程”,計(jì)劃將某村的居民自來(lái)水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合做15天,那么余下的工程由甲隊(duì)單獨(dú)完成還需5天.
(1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?
(2)已知甲隊(duì)每天的施工費(fèi)用為6500元,乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙隊(duì)合做來(lái)完成.則該工程施工費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為2的正方形ABCD中,點(diǎn)P、Q分別是邊AB、BC上的兩個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B、C不重合),且始終保持BP=BQ,AQ⊥QE,QE交正方形外角平分線CE于點(diǎn)E,AE交CD于點(diǎn)F,連結(jié)PQ.
(1)求證:△APQ≌△QCE;
(2)求∠QAE的度數(shù);
(3)設(shè)BQ=x,當(dāng)x為何值時(shí),QF∥CE,并求出此時(shí)△AQF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是矩形ABCD的對(duì)角線BD上的一點(diǎn),且BE=BC,AB=3,BC=4,點(diǎn)P為直線EC上的一點(diǎn),且PQ⊥BC于點(diǎn)Q,PR⊥BD于點(diǎn)R.
(1)①如圖1,當(dāng)點(diǎn)P為線段EC中點(diǎn)時(shí),易證:PR+PQ= (不需證明).②如圖2,當(dāng)點(diǎn)P為線段EC上的任意一點(diǎn)(不與點(diǎn)E、點(diǎn)C重合)時(shí),其它條件不變,則①中的結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.
(2)如圖3,當(dāng)點(diǎn)P為線段EC延長(zhǎng)線上的任意一點(diǎn)時(shí),其它條件不變,則PR與PQ之間又具有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的猜想.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com