如圖.點(diǎn)O是△ABC的內(nèi)心,若∠ACB=70°,則∠A0B=


  1. A.
    140°
  2. B.
    135°
  3. C.
    125°
  4. D.
    110°
C
分析:由點(diǎn)O是△ABC的內(nèi)心,即可得點(diǎn)O是△ABC的三條角平分線的交點(diǎn),即可得∠BAO=∠CAO=∠BAC,∠ABO=∠CBO=∠ABC,又由∠ACB=70°,利用三角形內(nèi)角和定理,即可求得∠ABC+∠BAC的度數(shù),繼而求得答案.
解答:∵點(diǎn)O是△ABC的內(nèi)心,
∴∠BAO=∠CAO=∠BAC,∠ABO=∠CBO=∠ABC,
∵∠ACB=70°,
∴∠ABC+∠BAC=180°-∠ACB=110°,
∴∠A0B=180°-(∠BAO+∠ABO)=180°-(∠BAC+∠ABC)=180°-×110°=125°.
故選C.
點(diǎn)評(píng):此題考查了三角形的內(nèi)切圓與內(nèi)心的知識(shí).此題難度不大,注意掌握△ABC的內(nèi)心是三角形的三條角平分線的交點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)F是△ABC外接圓
BC
的中點(diǎn),點(diǎn)D、E在邊AC上,使得AD=AB,BE=EC.證明:B、E、D、F四點(diǎn)共圓.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,點(diǎn)P是△ABC內(nèi)的一點(diǎn),有下列結(jié)論:①∠BPC>∠A;②∠BPC一定是鈍角;③∠BPC=∠A+∠ABP+∠ACP.其中正確的結(jié)論共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)O是△ABC內(nèi)任意一點(diǎn),G、D、E分別為AC、OA、OB的中點(diǎn),F(xiàn)為BC上一動(dòng)點(diǎn),問四邊形GDEF能否為平行四邊形?若可以,指出F點(diǎn)位置,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•攀枝花模擬)如圖,點(diǎn)G是△ABC的重心,CG的延長(zhǎng)線交AB于D,GA=5,GC=4,GB=3,將△ADG繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)180°得到△BDE,則△EBC的面積=
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•天津)如圖,點(diǎn)I是△ABC的內(nèi)心,AI交BC邊于D,交△ABC的外接圓于點(diǎn)E.
求證:(1)IE=BE;
      (2)IE是AE和DE的比例中項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案