年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖6,在△ABC中,∠ACB=90º,AC=BC=1,E、F為線段AB上兩動(dòng)點(diǎn),且∠ECF=45°,過點(diǎn)E、F分別作BC、AC的垂線相交于點(diǎn)M,垂足分別為H、G.現(xiàn)有以下結(jié)論:①AB=;②當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),MH=;③AF+BE=EF;④MG•MH=,其中正確結(jié)論為
A.①②③ B.①③④
C.①②④ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知在△ABC中,CD是AB邊上的高線,BE平分∠ABC,交CD于點(diǎn)E,BC=5,DE=2,則△BCE的面積等于( )
A. 10 B. 7 C. 5 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
問題背景:已知在△ABC中,AB邊上的動(dòng)點(diǎn)D由A向B運(yùn)動(dòng)(與A,B不重合),點(diǎn)E與點(diǎn)D同時(shí)出發(fā),由點(diǎn)C沿BC的延長線方向運(yùn)動(dòng)(E不與C重合),連結(jié)DE交AC于點(diǎn)F,點(diǎn)H是線段AF上一點(diǎn)
1) 初步嘗試:如圖1,若△ABC是等邊三角形,DH⊥AC,且點(diǎn)D,E的運(yùn)動(dòng)速度相等,求證:HF=AH+CF
小王同學(xué)發(fā)現(xiàn)可以由以下兩種思路解決此問題:
思路一:過點(diǎn)D作DG∥BC,交AC于點(diǎn)G,先證GH=AH,再證GF=CF,從而證得結(jié)論成立
思路二:過點(diǎn)E作EM⊥AC,交AC的延長線于點(diǎn)M,先證CM=AH,再證HF=MF,從而證得結(jié)論成立
請(qǐng)你任選一種思路,完整地書寫本小題的證明過程(如用兩種方法作答,則以第一種方法評(píng)分)
2) 類比探究:如圖2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且點(diǎn)D,E的運(yùn)動(dòng)速度之比是:1,求的值
3) 延伸拓展:如圖3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,記=m,且點(diǎn)D、E的運(yùn)動(dòng)速度相等,試用含m的代數(shù)式表示(直接寫出結(jié)果,不必寫解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖6,直線l上有一點(diǎn)P1(2,1),將點(diǎn)P1先向右平移1個(gè)單位,再向上平移2個(gè)單位得到像點(diǎn)P2,點(diǎn)P2恰好在直線l上.
(1)寫出點(diǎn)P2的坐標(biāo);
(2)求直線l所表示的一次函數(shù)的表達(dá)式;
(3)若將點(diǎn)P2先向右平移3個(gè)單位,再向上平移6個(gè)單位得到像點(diǎn)P3.請(qǐng)判斷點(diǎn)P3是否在直線l上,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com