【題目】實踐探究
在數學實踐課上,小明提出了這樣的問題:分數可以寫為小數形式,即0.反過來,無限循環(huán)小數0. 寫成分數形式即為.那么無限循環(huán)小數0. 應怎樣化為分數呢?
小明是這樣思考的:
在學習解一元一次方程時,當變形到ax=b(a≠0)形式后,通過系數化1,兩邊同時除以a,得到方程的解x=,就是分數形式.
設0. =x,即x=0.777…,又10x=7.77…,這里x、0.777…、10x、7.77…存在著關系,根據這一關系我就可以找到相等關系,列出方程.
請你閱讀小明的思考過程,把無限循環(huán)小數0. 化為分數的過程寫出來.
科目:初中數學 來源: 題型:
【題目】如圖,直線AB交雙曲線 于A,B兩點,交x軸于點C,且BC= AB,過點B作BM⊥x軸于點M,連結OA,若OM=3MC,S△OAC=8,則k的值為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD交于點O,AB=AC,點E是BD上一點,且AE=AD,∠EAD=∠BAC.
⑴ 求證:∠ABD=∠ACD;
⑵ 若∠ACB=65°,求∠BDC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是邊長為m的正三角形,D,E,F分別在邊AB,BC,CA上,AE,BF交于點P,BF,CD交于點Q,CD,AE交于點R,若 = = =k(0<k< ).
(1)求∠PQR的度數;
(2)求證:△ARD∽△ABE;
(3)求△PQR與△ABC的面積之比(用含k的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于點F,連接BF并延長交AC于點E,∠BAD=∠FCD.求證:
(1)△ABD≌△CFD;
(2)BE⊥AC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某手機專營店代理銷售A、B兩種型號手機.手機的進價、售價如下表:
型號 | A | B |
進價 | 1800元/部 | 1500元/部 |
售價 | 2070元/部 | 1800元/部 |
(1)第一個月:用54000元購進A、B兩種型號的手機,全部售完后獲利9450元,求第一個月購進A、B兩種型號手機的數量;
(2)第二個月:計劃購進A、B兩種型號手機共34部,且不超出第一個月購進A、B兩種型號的手機總費用,則A型號手機最多能購多少部?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市扶貧辦在精準扶貧工作中,組織30輛汽車裝運花椒、核桃、甘藍向外地銷售.按計劃30輛車都要裝運,每輛汽車只能裝運同一種產品,且必須裝滿,根據下表提供的信息,解答以下問題:
產品名稱 | 核桃 | 花椒 | 甘藍 |
每輛汽車運載量(噸) | 10 | 6 | 4 |
每噸土特產利潤(萬元) | 0.7 | 0.8 | 0.5 |
若裝運核桃的汽車為x輛,裝運甘藍的車輛數是裝運核桃車輛數的2倍多1,假設30輛車裝運的三種產品的總利潤為y萬元.
(1)求y與x之間的函數關系式;
(2)若裝花椒的汽車不超過8輛,求總利潤最大時,裝運各種產品的車輛數及總利潤最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s。
⑴連接AQ、CP交于點M,在點P、Q運動的過程中,∠CMQ的大小變化嗎?若變化,則說明理由,若不變,請直接寫出它的度數;
⑵點P、Q在運動過程中,設運動時間為t,當t為何值時,△PBQ為直角三角形?
⑶如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠CMQ的大小變化嗎?則說明理由;若不變,請求出它的度數。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程3x2﹣kx+k﹣4=0.
(1)判斷方程根的情況;
(2)若此方程有一個整數根,請選擇一個合適的k值,并求出此時方程的根.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com