【題目】如圖所示,拋物線y=ax2+bx+c的頂點(diǎn)為M(﹣2,﹣4),與x軸交于A、B兩點(diǎn),且A(﹣6,0),與y軸交于點(diǎn)C.
(1)求拋物線的函數(shù)解析式;
(2)求△ABC的面積;
(3)能否在拋物線第三象限的圖象上找到一點(diǎn)P,使△APC的面積最大?若能,請(qǐng)求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
【答案】
(1)
解:設(shè)此函數(shù)的解析式為y=a(x+h)2+k,
∵函數(shù)圖象頂點(diǎn)為M(﹣2,﹣4),
∴y=a(x+2)2﹣4,
又∵函數(shù)圖象經(jīng)過點(diǎn)A(﹣6,0),
∴0=a(﹣6+2)2﹣4
解得a= ,
∴此函數(shù)的解析式為y= (x+2)2﹣4,即y= x2+x﹣3;
(2)
解:∵點(diǎn)C是函數(shù)y= x2+x﹣3的圖象與y軸的交點(diǎn),
∴點(diǎn)C的坐標(biāo)是(0,﹣3),
又當(dāng)y=0時(shí),有y= x2+x﹣3=0,
解得x1=﹣6,x2=2,
∴點(diǎn)B的坐標(biāo)是(2,0),
則S△ABC= |AB||OC|= ×8×3=12;
(3)
解:假設(shè)存在這樣的點(diǎn),過點(diǎn)P作PE⊥x軸于點(diǎn)E,交AC于點(diǎn)F.
設(shè)E(x,0),則P(x, x2+x﹣3),
設(shè)直線AC的解析式為y=kx+b,
∵直線AC過點(diǎn)A(﹣6,0),C(0,﹣3),
∴ ,解得 ,
∴直線AC的解析式為y=﹣ x﹣3,
∴點(diǎn)F的坐標(biāo)為F(x,﹣ x﹣3),
則|PF|=﹣ x﹣3﹣( x2+x﹣3)=﹣ x2﹣ x,
∴S△APC=S△APF+S△CPF
= |PF||AE|+ |PF||OE|
= |PF||OA|= (﹣ x2﹣ x)×6=﹣ x2﹣ x=﹣ (x+3)2+ ,
∴當(dāng)x=﹣3時(shí),S△APC有最大值 ,
此時(shí)點(diǎn)P的坐標(biāo)是P(﹣3,﹣ ).
【解析】(1)根據(jù)頂點(diǎn)坐標(biāo)公式即可求得a、b、c的值,即可解題;(2)易求得點(diǎn)B、C的坐標(biāo),即可求得OC的長(zhǎng),即可求得△ABC的面積,即可解題;(3)作PE⊥x軸于點(diǎn)E,交AC于點(diǎn)F,可將△APC的面積轉(zhuǎn)化為△AFP和△CFP的面積之和,而這兩個(gè)三角形有共同的底PF,這一個(gè)底上的高的和又恰好是A、C兩點(diǎn)間的距離,因此若設(shè)設(shè)E(x,0),則可用x來表示△APC的面積,得到關(guān)于x的一個(gè)二次函數(shù),求得該二次函數(shù)最大值,即可解題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點(diǎn)C,D作BA,BC的平行線交于點(diǎn)E,且DE交AC于點(diǎn)O,連接AE.
(1)求證:四邊形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=12cm,將△ABC以點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),使點(diǎn)C旋轉(zhuǎn)到AB邊延長(zhǎng)線上的點(diǎn)D處,則AC邊掃過的圖形(陰影部分)的面積是cm2 . (結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,△ABC的頂點(diǎn)A、B、C在小正方形的頂點(diǎn)上,將△ABC向下平移4個(gè)單位、再向右平移3個(gè)單位得到△A1B1C1
(1)在網(wǎng)格中畫出△A1B1C1;
(2)計(jì)算線段AC在變換到A1C1的過程中掃過區(qū)域的面積(重疊部分不重復(fù)計(jì)算).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線l上有A、B兩個(gè)碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達(dá)點(diǎn)P處,此時(shí)從B碼頭測(cè)得小船在它的北偏東45°的方向.求此時(shí)小船到B碼頭的距離(即BP的長(zhǎng))和A、B兩個(gè)碼頭間的距離(結(jié)果都保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測(cè)量山頂鐵塔AE的高,小明在27m高的樓CD底部D測(cè)得塔頂A的仰角為45°,在樓頂C測(cè)得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的頂點(diǎn)C的坐標(biāo)為(3,4).頂點(diǎn)A在x軸的正半軸上,反比例函數(shù)y= (x>0)的圖象經(jīng)過頂點(diǎn)B,則k的值為( )
A.12
B.20
C.24
D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x=2m+n+2和x=m+2n時(shí),多項(xiàng)式x2+4x+6的值相等,且m﹣n+2≠0,則當(dāng)x=3(m+n+1)時(shí),多項(xiàng)式x2+4x+6的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1∥l2∥l3 , 等腰Rt△ABC的三個(gè)頂點(diǎn)A,B,C分別在l1 , l2 , l3上,∠ ACB=90°,AC交l2于點(diǎn)D,已知l1與l2的距離為1,l2與l3的距離為3,則AB:BD的值為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com