【題目】如圖,△ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點(diǎn)C,D作BA,BC的平行線交于點(diǎn)E,且DE交AC于點(diǎn)O,連接AE.
(1)求證:四邊形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.

【答案】
(1)證明:∵DE∥BC,CE∥AB,

∴四邊形DBCE是平行四邊形.

∴CE=BD,

又∵CD是邊AB上的中線,

∴BD=AD,

∴CE=DA,

又∵CE∥DA,

∴四邊形ADCE是平行四邊形.

∵∠BCA=90°,CD是斜邊AB上的中線,

∴AD=CD,

∴四邊形ADCE是菱形;


(2)解:過點(diǎn)C作CF⊥AB于點(diǎn)F,

由(1)可知,BC=DE,

設(shè)BC=x,則AC=2x,

在Rt△ABC中,AB= = x.

ABCF= ACBC,

∴CF= = x.

∵CD= AB= x,

∴sin∠CDB= =


【解析】(1)由DE∥BC,CE∥AB,可證得四邊形DBCE是平行四邊形,又由△ABC中,∠BCA=90°,CD是邊AB上的中線,根據(jù)直角三角形斜邊的中線等于斜邊的一半,可得CD=AD=BD=CE,然后由CE∥AB,證得四邊形ADCE平行四邊形的性質(zhì),繼而證得四邊形ADCE是菱形;(2)首先過點(diǎn)C作CF⊥AB于點(diǎn)F,由(1)可知,BC=DE,設(shè)BC=x,則AC=2x,然后由勾股定理求得AB,再由三角形的面積,求得CF的長(zhǎng),由勾股定理即可求得CD的長(zhǎng),繼而求得答案.
【考點(diǎn)精析】掌握勾股定理的概念是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算:(﹣ 1+( 0﹣4cos30°﹣| ﹣2|;
(2)先化簡(jiǎn),后求值:( ﹣x+1)÷ ,其中x= ﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①b2﹣4ac<0;②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;③2a+b=0;④當(dāng)y>0時(shí),x的取值范圍是﹣1<x<3;⑤當(dāng)x>0時(shí),y隨x增大而減。渲薪Y(jié)論正確的個(gè)數(shù)是(
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機(jī)調(diào)查了若干名學(xué)生,根據(jù)調(diào)查數(shù)據(jù)進(jìn)行整理,繪制了如下的不完整統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)以上的信息,回答下列問題:
(1)本次共調(diào)查了名學(xué)生,其中最喜愛戲曲的有人;在扇形統(tǒng)計(jì)圖中,最喜愛體育的對(duì)應(yīng)扇形的圓心角大小是
(2)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛新聞的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,O為AC中點(diǎn),EF過O點(diǎn)且EF⊥AC分別交DC于F,交AB于E,點(diǎn)G是AE中點(diǎn)且∠AOG=30°,則下列結(jié)論正確的個(gè)數(shù)為( ) ⑴DC=3OG;(2)OG= BC;(3)△OGE是等邊三角形;(4)SAOE= SABCD

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),另一動(dòng)點(diǎn)N同時(shí)從點(diǎn)B出發(fā),以1cm/s的速度沿著邊BA向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),設(shè)點(diǎn)M運(yùn)動(dòng)時(shí)間為x(s),△AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+(m﹣1)x+m(m>1)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,3).

(1)求拋物線的解析式;
(2)點(diǎn)D和點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,點(diǎn)你F在直線AD上方的拋物線上,F(xiàn)G⊥AD于G,F(xiàn)H∥x軸交直線AD于H,求△FGH的周長(zhǎng)的最大值;
(3)點(diǎn)M是拋物線的頂點(diǎn),直線l垂直于直線AM,與坐標(biāo)軸交于P、Q兩點(diǎn),點(diǎn)R在拋物線的對(duì)稱軸上,使得△PQR是以PQ為斜邊的等腰直角三角形,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),OF⊥BC于點(diǎn)F,交⊙O于點(diǎn)E,AE與BC交于點(diǎn)H,點(diǎn)D為OE的延長(zhǎng)線上一點(diǎn),且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為5,sinA= ,求BH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線y=ax2+bx+c的頂點(diǎn)為M(﹣2,﹣4),與x軸交于A、B兩點(diǎn),且A(﹣6,0),與y軸交于點(diǎn)C.

(1)求拋物線的函數(shù)解析式;
(2)求△ABC的面積;
(3)能否在拋物線第三象限的圖象上找到一點(diǎn)P,使△APC的面積最大?若能,請(qǐng)求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案