【題目】如圖,在ABC中,∠C=90°,∠ABC的平分線交AC于點E,過點EBE的垂線交AB于點F,⊙OBEF的外接圓.

1)求證:AC是⊙O的切線;

2)過點EEHAB,垂足為H,求證:CD=HF;

3)若CD=1EF=,求AF長.

【答案】1)見解析;(2)見解析;(3

【解析】

1)連接OE,由于BE是角平分線,則有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代換有∠OEB=∠CBE,那么利用內(nèi)錯角相等,兩直線平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC⊙O的切線;

2)連結(jié)DE,先根據(jù)AAS證明△CDE≌△HFE,再由全等三角形的對應(yīng)邊相等即可得出CD=HF;

3)先證得△EHF∽△BEF,根據(jù)相似三角形的性質(zhì)求得BF=10,進而根據(jù)直角三角形斜邊中線的性質(zhì)求得OE=5,進一步求得OH,然后解直角三角形即可求得OA,得出AF

證明:(1)如圖1,連接OE

∵BE⊥EF

∴∠BEF=90°,

∴BF是圓O的直徑.

∵BE平分∠ABC,

∴∠CBE=∠OBE

∵OB=OE,

∴∠OBE=∠OEB,

∴∠OEB=∠CBE,

∴OE//BC,

∴∠AEO=∠C=90°,

∴AC⊙O的切線;

2)解:如圖2,連結(jié)DE

∵∠CBE=∠OBE,EC⊥BCC,EH⊥ABH,

∴EC=EH

∵∠CDE+∠BDE=180°∠HFE+∠BDE=180°,

∴∠CDE=∠HFE

△CDE△HFE中,,

∴△CDE≌△HFEAAS),

∴CD=HF

3)解:由(2)得CD=HF,又CD=1

∴HF=1,

∵EF⊥BE,

∴∠BEF=90°,

∴∠EHF=∠BEF=90°,

∵∠EFH=∠BFE,

∴△EHF∽△BEF,

,即,

∴BF=10

∴OE=BF=5,OH=5-1=4

∴Rt△OHE中,cos∠EOA=

∴Rt△EOA中,cos∠EOA=

,

∴OA=

∴AF=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】經(jīng)中共中央決定設(shè)立河北雄安新區(qū),這一重大措施必將帶動首都及周邊區(qū)域向更高水平發(fā)展,同時也會帶來更多商機.某水果經(jīng)銷商在第一周購進一批水果1160件,預(yù)計在第二周進行試銷,購進價格為每件10元,若售價為每件12元,則可全部售出;若售價每漲價0.1元,銷量就減少2件.

1)若該經(jīng)銷商在第二周的銷量不低于1100件,則售價應(yīng)不高于多少元?

2)由于銷量較好,第三周水果進價比第一周每件增加了20%,該經(jīng)銷商增加了進貨量,并加強了宣傳力度,結(jié)果第三周的銷量比第二周在(1)條件下的最低銷量增加了m%,但售價比第二周在(1)條件下的最高售價減少了m%,結(jié)果第三周利潤達到3388元,求m的值(m10).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市計劃購進甲、乙兩種商品,兩種商品的進價、售價如下表:

商品

進價(元/件)

x60

x

售價(元/件)

200

100

若用1800元購進甲種商品的件數(shù)與用900元購進乙種商品的件數(shù)相同.

1)求甲、乙兩種商品的進價是多少元?

2)若超市銷售甲、乙兩種商品共100件,其中銷售甲種商品為a件(a40),設(shè)銷售完100件甲、乙兩種商品的總利潤為w元,求wa之間的函數(shù)關(guān)系式,并求出w的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC內(nèi)接于⊙O,過點B作直線EFAC,又知∠ACB=∠BDC60°ACcm

1)請?zhí)骄?/span>EF與⊙O的位置關(guān)系,并說明理由;

2)求⊙O的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,點D在雙曲線上,AD垂直x軸,垂足為A,點CAD上,CB平行于x軸交雙曲線于點B,直線ABy軸相交于點F,已知ACAD13,點C的坐標為(3,2).

1)求反比例函數(shù)和一次函數(shù)的表達式;

2)直接寫出反比例函數(shù)值大于一次函數(shù)值時自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtΔABCC90°,ABC30°,ΔABC繞點C順時針旋轉(zhuǎn)得ΔA1B1C,當A1落在AB上時,連接B1B,取B1B的中點D,連接A1D,則的值為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1P是平面直角坐標系中第一象限內(nèi)一點,過點PPAx軸于點A,以AP為邊在右側(cè)作等邊APQ,已知點Q的縱坐標為2,連結(jié)OQAPB,BQ3OB

(1)求點P的坐標;

(2)如圖2,若過點P的雙曲線(k0)與過點Q垂直于x軸的直線交于D,連接PD.求

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗中學為了獎勵在學校《詩詞大會》上獲獎的同學,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.

1)如果購買甲、乙兩種獎品共花費650元,求甲、乙兩種獎品各購買了多少件.

2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求學校有幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+bx+c經(jīng)過點A(0,6),點B(1,3),直線l1:y=kx(k≠0),直線l2:y=-x-2,直線l1經(jīng)過拋物線y=x2+bx+c的頂點P,且l1與l2相交于點C,直線l2與x軸、y軸分別交于點D、E.若把拋物線上下平移,使拋物線的頂點在直線l2上(此時拋物線的頂點記為M),再把拋物線左右平移,使拋物線的頂點在直線l1上(此時拋物線的頂點記為N).

(1)求拋物y=x2+bx+c線的解析式.

(2)判斷以點N為圓心,半徑長為4的圓與直線l2的位置關(guān)系,并說明理由.

(3)設(shè)點F、H在直線l1上(點H在點F的下方),當△MHF與△OAB相似時,求點F、H的坐標(直接寫出結(jié)果).

查看答案和解析>>

同步練習冊答案