【題目】如圖,某大樓頂部有一旗桿AB,甲乙兩人分別在相距6米的C、D兩處測得B點和A點的仰角分別是42°和65°,且C、D、E在一條直線上.如果DE=15米,求旗桿AB的長大約是多少米?(結(jié)果保留整數(shù))

(參考數(shù)據(jù):sin42°≈0.67,tan42°≈0.9,sin65°≈0.91,tan65°≈2.1)

【答案】旗桿AB的長大約是13米

【解析】試題分析:根據(jù)題意構(gòu)造直角三角形,在兩個直角三角形ADE、CBE求得AE、BE的長,再利用AB=AE-BE可求出答案.

試題解析:

在直角ADE中,∠ADE=65°,DE=15米,則tanADE=,sinADE=,

tan65°=≈2.1,解得 AE≈31.5(米),

在直角BCE中,∠BCE=42°,CE=CD+DE=21米,則tanBCE=,即tan42°=≈0.9,

解得 BE≈18.9(米),則AB=AE﹣BE=31.5﹣18.9≈13(米).

答:旗桿AB的長大約是13米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)計劃為新生配備如圖1所示的折疊凳.圖2是折疊凳撐開后的側(cè)面示意圖(木條等材料寬度忽略不計),其中凳腿ABCD的長相等,O是它們的中點.為了使折疊凳坐著舒適,廠家將撐開后的折疊凳寬度AD設(shè)計為30 cm,由以上信息能求出CB的長度嗎?請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算(-x3y)2的結(jié)果是( )

A. -x5y B. x6y C. -x3y2 D. x6y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(3,﹣4)所在的象限是(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】指出下列各式成立的條件:

(1)由mx<n,得x<;

(2)由a<b,得ma>mb;

(3)由a>-5,得a2≤-5a;

(4)由3x>4y,得3x-m>4y-m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1 , △ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2 , △AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn= . (用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(1)班學(xué)生在完成課題學(xué)習(xí)體質(zhì)健康測試中的數(shù)據(jù)分析后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓(xùn)練,訓(xùn)練后都進行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.

請你根據(jù)上面提供的信息回答下列問題:

1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學(xué)生 人,訓(xùn)練后籃球定時定點投籃平均每個人的進球數(shù)是

2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果某數(shù)的一個平方根是﹣2,那么這個數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場某柜臺銷售每臺進價分別為160元、120元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3臺

4臺

1200元

第二周

5臺

6臺

1900元

(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)

(1)求A、B兩種型號的電風(fēng)扇的銷售單價;

(2)若商場準(zhǔn)備用不多于7500元的金額再采購這兩種型號的電風(fēng)扇共50臺,求A種型號的電風(fēng)扇最多能采購多少臺?

(3)在(2)的條件下,商場銷售完這50臺電風(fēng)扇能否實現(xiàn)利潤超過1850元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案