【題目】我們規(guī)定x的一元一次方程ax=b的解為b﹣a,則稱該方程是“差解方程”,例如:3x=4.5的解為4.5﹣3=1.5,則該方程3x=4.5就是“差解方程”,請根據(jù)上述規(guī)定解答下列問題:
(1)已知關(guān)于x的一元一次方程4x=m是“差解方程”,則m=______.
(2)已知關(guān)于x的一元一次方程4x=ab+a是“差解方程”,它的解為a,則a+b=_____.
(3)已知關(guān)于x的一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,求代數(shù)式﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]的值.
【答案】(1);(2);(3)﹣.
【解析】
(1)根據(jù)差解方程的定義即可得出關(guān)于m的一元一次方程,解之即可得出結(jié)論;
(2)根據(jù)差解方程的定義即可得出關(guān)于a、b的二元二次方程組,解之得出a、b的值即可得出答案;
(3)根據(jù)差解方程的概念列式得到關(guān)于m、n的兩個方程,聯(lián)立求解得到m、n的關(guān)系,然后代入化簡后的代數(shù)式進(jìn)行計算即可求解.
解:(1)由題意可知x=m﹣4,由一元一次方程可知x=,
∴m﹣4=,
解得m=;
故答案為:;
(2)由題意可知x=ab+a﹣4,由一元一次方程可知x=,
又∵方程的解為a,
∴=a,ab+a﹣4=a,
解得a=,b=3,
∴a+b=;
故答案為:.
(3)∵一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,
∴mn+m=,mn+n=﹣,
兩式相減得,m﹣n=.
∴﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]
=﹣5(m﹣n)﹣33,
=﹣5×﹣33+2×,
=,
=﹣.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長都為1個單位長度,△ABC的三個頂點的位置。如圖所示,
現(xiàn)將△ABC平移后得△EDF,使點B的對應(yīng)點為點D,點A對應(yīng)點為點E.
(1)畫出△EDF;
(2)線段BD與AE有何關(guān)系? ____________;
(3)連接CD、BD,則四邊形ABDC的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鐵件加工廠用如圖所示的長方形和正方形鐵片(長方形的寬與正方形的邊長相等)加工成如圖.所示的豎式與橫式兩種無蓋的長方體鐵容器.(加工時接縫材料不計)
(1)如果加工豎式鐵容器與橫式鐵容器各 1 個,則共需要長方形鐵片 張,正方形鐵片 張.
(2)現(xiàn) 有長方形鐵片 2017 張,正方形鐵片 1178 張,如果加工成這兩種鐵容器,剛好鐵片全部用完,那加工的豎式鐵容器、橫式鐵容器各有多少個?
(3)把長方體鐵容器加蓋可以加工成為鐵盒.現(xiàn)用 35 張鐵板做成長方形鐵片和正方形鐵片,已知每張鐵板可做成 3 個長方形鐵片或 4 個正方形鐵片,也可以將一張鐵板裁出 1 個長方形鐵片和 2 個正方形鐵片.若充分利用這些鐵板加工成鐵盒,則最多可以加工成多少個鐵盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】早在1960年、中國登山隊首次從珠穆朗瑪北側(cè)中國境內(nèi)登上珠峰,近幾十年,珠峰更是吸引了大批的登山愛好者,某日,登山運動員傅博準(zhǔn)備從海拔7400米的3號營地登至海拔近7900米的4號營地,由于天氣驟變,近6小時的攀爬過程中他不得不幾次下撤躲避強高空風(fēng),記向上爬升的海拔高度為正數(shù),向下撒退時下降的海拔高度為負(fù)數(shù),傅博在這一天攀爬的海拔高度記錄如下:(單位:米)+320、-55、+116、-20、+81、-43、+115.
(1)傳博能按原計劃在這天登至4號營地嗎?
(2)若在這一登山過程中,傅博所處位置的海拔高度上升或下降1米平均消耗8大卡的卡路里,則傅博這天消耗了多少卡路里?
(3)登山消耗的卡路里預(yù)估為:1千克身體重量(體重或負(fù)重)1天需要55~65(大于等于55,小于等于65)大卡的卡路里,海拔6000米以上會使卡路里消耗增加20%,登山協(xié)會約定海拔5000米以上運動員負(fù)重14千克,在(2)的條件下,請你估算傳博的體重范圍.(精確到1千克)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大家喜歡玩的幻方游戲,老師精加創(chuàng)新改成了“幻圓”游戲,現(xiàn)在將-1,2,-3,4,5,6,- 7,8分別填入如圖所示的四圈內(nèi),使橫、整以及內(nèi)外兩圈上的4個數(shù)字之和都相等,老師已經(jīng)幫助同學(xué)們完成了部分填空,則的值為( )
A.-8或1B.-1或1
C.-1或4D.-6或-3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與理解:
折紙,常常能為證明一個命題提供思路和方法.例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>∠B呢?
把AC沿∠A的角平分線AD翻折,因為AB>AC,所以點C落在AB上的點處,即,據(jù)以上操作,易證明≌,所以,又因為>∠B,所以∠C>∠B.
感悟與應(yīng)用:
(1)如圖(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,試判斷AC和AD、BC之間的數(shù)量關(guān)系,并說明理由;
(2)如圖(b),在四邊形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
① 求證:∠B+∠D=180°;
② 求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,給出下列結(jié)論:①;②;③;④≌,其中正確的是( )
A. ①③④;B. ②③④;C. ①②④D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,BD平分∠ABC,CE平分∠ACB的鄰補角∠ACM,若∠BDC=130°,∠E=50°,則∠BAC的度數(shù)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一,為了增強居民的節(jié)水意識,某自來水公司對居民用水采取以戶為單位分段計費辦法收費;即每月用水10噸以內(nèi)(包括10噸)的用戶,每噸水收費a元,每月用水超過10噸的部分,按每噸b元(b>a)收費,設(shè)一戶居民月用水x(噸),應(yīng)收水費y(元),y與x之間的函數(shù)關(guān)系如圖所示.
(1)分段寫出y與x的函數(shù)關(guān)系式.
(2)某戶居民上月用水8噸,應(yīng)收水費多少元?
(3)已知居民甲上月比居民乙多用水4噸,兩家一共交水費46元,求他們上月分別用水多少噸?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com