【題目】如圖所示,△ABC中,BD平分∠ABC,CE平分∠ACB的鄰補(bǔ)角∠ACM,若∠BDC=130°,∠E=50°,則∠BAC的度數(shù)是_______.
【答案】120°
【解析】
由三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和以及CE是外角的平分線列式求出∠B的度數(shù),再根據(jù)BD為內(nèi)角平分線求出∠ABD的度數(shù),然后利用三角形的外角性質(zhì)即可求出∠BAC的度數(shù).
根據(jù)三角形的外角性質(zhì),∠DBC+∠BDC=2(∠ABC+∠E),
∵BD為內(nèi)角平分線,
∴∠DBC=∠ABD,
∴∠ABC+130°=2(∠ABC+50°),
解得∠ABC=20°,
∴∠ABD=×20°=10°,
在△ABD中,∠BDC=∠ABD+∠BAC,
即130°=10°+∠BAC,
解得∠BAC=120°.
故答案為:120°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上線段AB長(zhǎng)2個(gè)單位長(zhǎng)度,CD長(zhǎng)4個(gè)單位長(zhǎng)度,點(diǎn)A在數(shù)軸上表示的數(shù)是﹣10,點(diǎn)C在數(shù)軸上表示的數(shù)是16.若線段AB以每秒6個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).
(1)問(wèn):運(yùn)動(dòng)多少秒后,點(diǎn)B與點(diǎn)C互相重合?
(2)當(dāng)運(yùn)動(dòng)到BC為6個(gè)單位長(zhǎng)度時(shí),則運(yùn)動(dòng)的時(shí)間是多少秒?
(3)P是線段AB上一點(diǎn),當(dāng)點(diǎn)B運(yùn)動(dòng)到線段CD上時(shí),是否存在關(guān)系式?若存在,求線段PD的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定x的一元一次方程ax=b的解為b﹣a,則稱該方程是“差解方程”,例如:3x=4.5的解為4.5﹣3=1.5,則該方程3x=4.5就是“差解方程”,請(qǐng)根據(jù)上述規(guī)定解答下列問(wèn)題:
(1)已知關(guān)于x的一元一次方程4x=m是“差解方程”,則m=______.
(2)已知關(guān)于x的一元一次方程4x=ab+a是“差解方程”,它的解為a,則a+b=_____.
(3)已知關(guān)于x的一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,求代數(shù)式﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)銷售甲、乙兩種商品,它們的進(jìn)價(jià)和售價(jià)如下表所示,
進(jìn)價(jià)(元) | 售價(jià)(元) | |
甲 | 15 | 20 |
乙 | 35 | 43 |
(1)若該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品共 100 件,恰好用去 2700 元,求購(gòu)進(jìn)甲、乙兩種商品各多少件?
(2)該商場(chǎng)為使銷售甲、乙兩種商品共 100 件的總利潤(rùn)(利潤(rùn)=售價(jià)-進(jìn)價(jià))不少于750 元,且不超過(guò) 760 元,請(qǐng)你幫助該商場(chǎng)設(shè)計(jì)相應(yīng)的進(jìn)貨方案.
(3)若商場(chǎng)銷售甲、乙兩種商品的總利潤(rùn)(利潤(rùn)=售價(jià)-進(jìn)價(jià))是 103 元,求銷售甲、 乙兩種商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是一個(gè)正方體的表面展開圖,請(qǐng)回答下列問(wèn)題:
(1)與面B、面C相對(duì)的面分別是 和 ;
(2)若A=a3+a2b+3,B=﹣a2b+a3,C=a3﹣1,D=﹣(a2b+15),且相對(duì)兩個(gè)面所表示的代數(shù)式的和都相等,求E、F代表的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是一個(gè)正方體的表面展開圖,請(qǐng)回答下列問(wèn)題:
(1)與面B、面C相對(duì)的面分別是 和 ;
(2)若A=a3+a2b+3,B=﹣a2b+a3,C=a3﹣1,D=﹣(a2b+15),且相對(duì)兩個(gè)面所表示的代數(shù)式的和都相等,求E、F代表的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,圖2中,正方形ABCD的邊長(zhǎng)為6,點(diǎn)P從點(diǎn)B出發(fā)沿邊BC—CD以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)D勻速運(yùn)動(dòng),以BP為邊作等邊三角形BPQ,使點(diǎn)Q在正方形ABCD內(nèi)或邊上,當(dāng)點(diǎn)Q恰好運(yùn)動(dòng)到AD邊上時(shí),點(diǎn)P停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0)。
(1)當(dāng)t=2時(shí),點(diǎn)Q到BC的距離=_____;
(2)當(dāng)點(diǎn)P在BC邊上運(yùn)動(dòng)時(shí),求CQ的最小值及此時(shí)t的值;
(3)若點(diǎn)Q在AD邊上時(shí),如圖2,求出t的值;
(4)直接寫出點(diǎn)Q運(yùn)動(dòng)路線的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC,△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)直接寫出AB與AP所滿足的數(shù)量關(guān)系:_____,AB與AP的位置關(guān)系:_____;
(2)將△ABC沿直線l向右平移到圖2的位置時(shí),EP交AC于點(diǎn)Q,連接AP,BQ,求證:AP=BQ;
(3)將△ABC沿直線l向右平移到圖3的位置時(shí),EP的延長(zhǎng)線交AC的延長(zhǎng)線于點(diǎn)Q,連接AP,BQ,試探究AP=BQ是否仍成立?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,湛河兩岸AB與EF平行,小亮同學(xué)假期在湛河邊A點(diǎn)處,測(cè)得對(duì)岸河邊C處視線與湛河岸的夾角∠CAB=37°,沿河岸前行140米到點(diǎn)B處,測(cè)得對(duì)岸C處的視線與湛河岸夾角∠CBA=45°.問(wèn)湛河的寬度約多少米?(參考數(shù)據(jù):sin37°≈0.60,cos37°=0.80,tan37°=0.75)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com