【題目】已知點(diǎn)I為△ABC的內(nèi)心

(1) 如圖1,AI交BC于點(diǎn)D,若AB=AC=6,BC=4,求AI的長(zhǎng)

(2) 如圖2,過(guò)點(diǎn)I作直線交AB于點(diǎn)M,交AC于點(diǎn)N

① 若MN⊥AI,求證:MI2=BM·CN

② 如圖3,AI交BC于點(diǎn)D.若∠BAC=60°,AI=4,請(qǐng)直接寫(xiě)出的值

【答案】(1)AI的長(zhǎng)是;

(2)①證明見(jiàn)解析;②

【解析】試題分析:(1)、根據(jù)內(nèi)心的性質(zhì)得出AD為線段BC的中垂線,然后根據(jù)Rt△BID的勾股定理得出答案;(2)、首先得出△AMI和△ANI全等,從而得出∠AMN=∠ANM,然后連接BI和CI,根據(jù)角度之間的關(guān)系得出△BMI和△INC相似,則NI2=BM·CN,根據(jù)NI=MI得出答案;(3)、過(guò)點(diǎn)N作NG∥AD交MA的延長(zhǎng)線于G,則∠ANG=∠AGN=30° ∴AN=AG,NG=然后根據(jù)平行線性質(zhì)得出,然后代入得出答案.

試題解析:(1)

(2) ∵I為△ABC的內(nèi)心 AI⊥MN ∴△AMI≌△ANI(ASA) ∴∠AMN=∠ANM

連接BI、CI ∴∠BMI=∠CNI

設(shè)∠BAI=∠CAI=α,∠ACI=∠BCI=β ∴∠NIC=90°-α-β

∵∠ABC=180°-2α-2β ∴∠MBI=90°-α-β ∴△BMI∽△INC

∴NI2=BM·CN ∵NI=MI ∴MI2=BM·CN

(3) 過(guò)點(diǎn)N作NG∥AD交MA的延長(zhǎng)線于G ∴∠ANG=∠AGN=30° ∴AN=AG,NG=

∵AI∥NG ∴,得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線y=x﹣1的圖象經(jīng)過(guò)的象限是(  )

A. 第一、二、三象限 B. 第一、二、四象限 C. 第二、三、四象限 D. 第一、三、四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分8分)已知O的半徑為13cm,弦ABCD,AB=24cm,CD=10cm,求AB和CD之間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的周長(zhǎng)為20cm,現(xiàn)將△ABC沿AB方向平移2cm至△A′B′C′的位置,連接CC′,則四邊形AB′C′C的周長(zhǎng)是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)納米粒子的直徑是0.000 000 035米,用科學(xué)記數(shù)法表示為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們用字母a表示一個(gè)有理數(shù),試判斷下列說(shuō)法是否正確,若不正確,請(qǐng)舉出反例.
(1)a一定表示正數(shù),﹣a一定表示負(fù)數(shù);
(2)如果a是零,那么﹣a就是負(fù)數(shù);
(3)若﹣a是正數(shù),則a一定為非正數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一張長(zhǎng)方形紙片ABCD沿EF折疊后ED與BC的交點(diǎn)為G,D,C分別在M,N的位置上,若∠EFG=56°,則∠1= , ∠2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m2+m-1=0,則m3+2m2+2017= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一長(zhǎng)方體的寬為b(定值),長(zhǎng)為x(x>b),高為h,體積為V,則V=bxh,其中變量是( 。

A. x B. h C. V D. x、h、V均為變量

查看答案和解析>>

同步練習(xí)冊(cè)答案