已知等邊三角形紙片ABC的邊長(zhǎng)為8,D為AB邊上的點(diǎn),過(guò)點(diǎn)D作DG∥BC交AC于點(diǎn)G.DE⊥BC于點(diǎn)E,過(guò)點(diǎn)G作GF⊥BC于點(diǎn)F,把三角形紙片ABC分別沿DG,DE,GF按圖1所示方式折疊,點(diǎn)A,B,C分別落在點(diǎn)A′,B′,C′處.若點(diǎn)A′,B′,C′在矩形DEFG內(nèi)或其邊上,且互不重合,此時(shí)我們稱△A′B′C′(即圖中陰影部分)為“重疊三角形”.
(1)若把三角形紙片ABC放在等邊三角形網(wǎng)格中(圖中每個(gè)小三角形都是邊長(zhǎng)為1的等邊三角形),點(diǎn)A,B,C,D恰好落在網(wǎng)格圖中的格點(diǎn)上.如圖2所示,請(qǐng)直接寫(xiě)出此時(shí)重疊三角形A′B′C′的面積;
(2)實(shí)驗(yàn)探究:設(shè)AD的長(zhǎng)為m,若重疊三角形A′B′C′存在.試用含m的代數(shù)式表示重疊三角形A′B′C′的面積,并寫(xiě)出m的取值范圍.(直接寫(xiě)出結(jié)果)

【答案】分析:(1)每個(gè)小三角形的面積是,由圖知,陰影部分有四個(gè)小三角形,故重疊三角形A'B'C'的面積為;
(2)當(dāng)AD的長(zhǎng)為m,BD為8-m,根據(jù)三角形的面積公式可得.
解答:解:(1)∵每個(gè)小三角形的面積是
∴重疊三角形A'B'C'的面積為;

(2)重疊的等邊三角形A'B'C'的邊長(zhǎng)|8-m-m|=|8-2m|,
根據(jù)S=absinC得:
面積是:•|8-2m|2=(4-m)2
用含m的代數(shù)式表示重疊三角形A'B'C'的面積為(4-m)2,
m的取值范圍為≤m<4.
點(diǎn)評(píng):本題是一個(gè)探究性的折疊問(wèn)題,考查了等邊三角形的性質(zhì)、圖形的折疊、平行四邊形的性質(zhì)等,同時(shí)考核了學(xué)生對(duì)新知識(shí)的探究能力.本題題目較長(zhǎng),理解題意是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知等邊三角形紙片ABC的邊長(zhǎng)為8,D為AB邊上的點(diǎn),過(guò)點(diǎn)D作DG∥BC交AC于點(diǎn)G.DE⊥BC于點(diǎn)E,過(guò)點(diǎn)G作GF⊥BC于點(diǎn)F,把三角形紙片ABC分別沿DG,DE,GF按圖1所示方式折疊,點(diǎn)A,B,C分別落在點(diǎn)A′,B′,C′處.若點(diǎn)A′,B′,C′在矩形DEFG內(nèi)或其邊上,且互不重合,此時(shí)我們稱△A′B′C′(即圖中陰影部分)為“重疊三角形”.
(1)若把三角形紙片ABC放在等邊三角形網(wǎng)格中(圖中每個(gè)小三角形都是邊長(zhǎng)為1的等邊三角形),點(diǎn)A,B,C,D恰好落在網(wǎng)格圖中的格點(diǎn)上.如圖2所示,請(qǐng)直接寫(xiě)出此時(shí)重疊三角形A′B′C′的面積;
(2)實(shí)驗(yàn)探究:設(shè)AD的長(zhǎng)為m,若重疊三角形A′B′C′存在.試用含m的代數(shù)式表示重疊精英家教網(wǎng)三角形A′B′C′的面積,并寫(xiě)出m的取值范圍.(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第25章《圖形的變換》中考題集(34):25.3 軸對(duì)稱變換(解析版) 題型:解答題

已知等邊三角形紙片ABC的邊長(zhǎng)為8,D為AB邊上的點(diǎn),過(guò)點(diǎn)D作DG∥BC交AC于點(diǎn)G.DE⊥BC于點(diǎn)E,過(guò)點(diǎn)G作GF⊥BC于點(diǎn)F,把三角形紙片ABC分別沿DG,DE,GF按圖1所示方式折疊,點(diǎn)A,B,C分別落在點(diǎn)A′,B′,C′處.若點(diǎn)A′,B′,C′在矩形DEFG內(nèi)或其邊上,且互不重合,此時(shí)我們稱△A′B′C′(即圖中陰影部分)為“重疊三角形”.
(1)若把三角形紙片ABC放在等邊三角形網(wǎng)格中(圖中每個(gè)小三角形都是邊長(zhǎng)為1的等邊三角形),點(diǎn)A,B,C,D恰好落在網(wǎng)格圖中的格點(diǎn)上.如圖2所示,請(qǐng)直接寫(xiě)出此時(shí)重疊三角形A′B′C′的面積;
(2)實(shí)驗(yàn)探究:設(shè)AD的長(zhǎng)為m,若重疊三角形A′B′C′存在.試用含m的代數(shù)式表示重疊三角形A′B′C′的面積,并寫(xiě)出m的取值范圍.(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年河北省廊坊市安次區(qū)九年級(jí)網(wǎng)絡(luò)試卷設(shè)計(jì)大賽數(shù)學(xué)試卷(1)(解析版) 題型:解答題

(2008•北京)已知等邊三角形紙片ABC的邊長(zhǎng)為8,D為AB邊上的點(diǎn),過(guò)點(diǎn)D作DG∥BC交AC于點(diǎn)G.DE⊥BC于點(diǎn)E,過(guò)點(diǎn)G作GF⊥BC于點(diǎn)F,把三角形紙片ABC分別沿DG,DE,GF按圖1所示方式折疊,點(diǎn)A,B,C分別落在點(diǎn)A′,B′,C′處.若點(diǎn)A′,B′,C′在矩形DEFG內(nèi)或其邊上,且互不重合,此時(shí)我們稱△A′B′C′(即圖中陰影部分)為“重疊三角形”.
(1)若把三角形紙片ABC放在等邊三角形網(wǎng)格中(圖中每個(gè)小三角形都是邊長(zhǎng)為1的等邊三角形),點(diǎn)A,B,C,D恰好落在網(wǎng)格圖中的格點(diǎn)上.如圖2所示,請(qǐng)直接寫(xiě)出此時(shí)重疊三角形A′B′C′的面積;
(2)實(shí)驗(yàn)探究:設(shè)AD的長(zhǎng)為m,若重疊三角形A′B′C′存在.試用含m的代數(shù)式表示重疊三角形A′B′C′的面積,并寫(xiě)出m的取值范圍.(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年北京市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•北京)已知等邊三角形紙片ABC的邊長(zhǎng)為8,D為AB邊上的點(diǎn),過(guò)點(diǎn)D作DG∥BC交AC于點(diǎn)G.DE⊥BC于點(diǎn)E,過(guò)點(diǎn)G作GF⊥BC于點(diǎn)F,把三角形紙片ABC分別沿DG,DE,GF按圖1所示方式折疊,點(diǎn)A,B,C分別落在點(diǎn)A′,B′,C′處.若點(diǎn)A′,B′,C′在矩形DEFG內(nèi)或其邊上,且互不重合,此時(shí)我們稱△A′B′C′(即圖中陰影部分)為“重疊三角形”.
(1)若把三角形紙片ABC放在等邊三角形網(wǎng)格中(圖中每個(gè)小三角形都是邊長(zhǎng)為1的等邊三角形),點(diǎn)A,B,C,D恰好落在網(wǎng)格圖中的格點(diǎn)上.如圖2所示,請(qǐng)直接寫(xiě)出此時(shí)重疊三角形A′B′C′的面積;
(2)實(shí)驗(yàn)探究:設(shè)AD的長(zhǎng)為m,若重疊三角形A′B′C′存在.試用含m的代數(shù)式表示重疊三角形A′B′C′的面積,并寫(xiě)出m的取值范圍.(直接寫(xiě)出結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案