如圖,已知邊長為4的正方形ABCD中,E為CD中點,P為BE中點,F(xiàn)為AP中點,F(xiàn)H⊥AB交AB于H連接PH則下列結(jié)論正確的有                              (   )

①BE=AE   ② ③HP//AE  ④HF=1 ⑤

A.2個             B.3個              C.4個              D.5個

 

【答案】

B

【解析】

試題分析:①BE=AE正確:正方形ABCD中,E為CD中點,則過E作EM⊥AB。垂足為點M。則可證明M為AB中等,故Rt△AEM≌Rt△BEM,則AE=BE。

正確:因為正方形ABCD中,E為CD中點,所以Rt△ADE中,AD=2DE,所以

,所以

由于△EBC不是等邊三角形而是等腰三角形,而P是BE中點,所以AP并不垂直于BR,BE=2EP,只有當(dāng)∠BPE=90°時sin∠EBP=,但∠EPA并不等于90°,所以②不正確;

(3)過點P作PM⊥AB于M,

由于F是AP中點,則HF是△APM的一條中位線,即H是AM中點,不是AB中點,故HP不是△BAE的中位線,也就可得出HP不平行AE,所以③錯誤;

(4)過點P作PM⊥AB于M,過點E作EN⊥AB于點N,

由點P是BE中點可得PM是△PNE的中位線,PM=NE=2,

(3)得出了HF是△APM的中位線,HF=PM,故可得HF=

PM=1,故④正確;

(5)

過點P作PM⊥AB于點M,作PL⊥BC于點L,則根據(jù)中位線的知識,可得出PM=2,PL=1,從而求出S△APC=S△ABC-S△ABC-S△ABP-S△BPC=8-2-4=2,再由AF=FP可得S△AFC=

S△ABC=1,故⑤正確.綜上可得①④⑤正確,共三個.故選C.

考點:四邊形性質(zhì)

點評:本題難度較大,主要考查學(xué)生對四邊形中全等三角形性質(zhì)判定,及中位線等知識點綜合運用能力,要求學(xué)生牢固掌握各性質(zhì)判定靈活運用到考試中去。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知邊長為4的正方形ABCD中,E為AD中點,P為CE中點,F(xiàn)為BP中點,F(xiàn)H⊥BC交BC于H,連接PH,則下列結(jié)論正確的是(  )
①BE=CE;②sin∠EBP=
1
2
;③HP∥BE;④HF=1;⑤S△BFD=1.
A、①④⑤B、①②③
C、①②④D、①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知邊長為l的正方形OABC在直角坐標(biāo)系中,A、B兩點在第一象限內(nèi),OA與x軸的夾角為30°,那么點B的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知邊長為5的等邊三角形ABC紙片,點E在AC邊上,點F在AB邊上,沿著EF折疊,使點A落在BC邊上的點D的位置,且ED⊥BC,則CE的長是( 。
A、10
3
-15
B、10-5
3
C、5
3
-5
D、20-10
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知邊長為2的正三角形ABC中,P0是BC邊的中點,一束光線自P0發(fā)出射到AC上的點P1后,依次反射到AB、BC上的點P2和P3(反射角等于入射角),且1<BP3
3
2
,則P1C長的取值范圍是( 。
A、1<P1C<
7
6
B、
5
6
<P1C<1
C、
3
4
<P1C<
4
5
D、
7
6
<P1C<2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知邊長為2的正三角形ABC沿著直線l滾動.設(shè)△ABC滾動240°時,C點的位置為C′,△ABC滾動480°時,A點的位置為A′.請你利用三角函數(shù)中正切的兩角和公式:tan(α+β)=(tanα+tanβ)÷(1-tanα•tanβ),求出∠CAC′+∠CAA′的度數(shù).(  )

查看答案和解析>>

同步練習(xí)冊答案