在等腰△ABC中,三邊分別為a、b、c,其中a=4,b、c恰好是方程的兩個實數(shù)根,則△ABC的周長為__________.

 

【答案】

10

【解析】

試題分析:題目中沒有明確腰和底,故要分情況討論,同時結合一元二次方程根的判別式求解即可.

當腰為4時,方程有一根也為4

所以,解得

則原方程可化為,解得

此時等腰△ABC的三邊分別為4、4、2,則周長為

當?shù)诪?時,方程有兩個相等的實數(shù)根

所以△,解得

則原方程可化為,解得

此時等腰△ABC的三邊分別為4、2、2,無法構成三角形,舍去

綜上,△ABC的周長為10.

考點:等腰三角形的性質,一元二次方程根的判別式

點評:解答本題的關鍵是熟練掌握一元二次方程根的情況與判別式△的關系:(1)方程有兩個不相等的實數(shù)根;(2)方程有兩個相等的實數(shù)根;(3)方程沒有實數(shù)根.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知在等腰△ABC中,∠A=∠B=30°,過點C作CD⊥AC交AB于點D.
(1)尺規(guī)作圖:過A,D,C三點作⊙O(只要求作出圖形,保留痕跡,不要求寫作法);
(2)求證:BC是過A,D,C三點的圓的切線;
(3)若過A,D,C三點的圓的半徑為
3
,則線段BC上是否存在一點P,使得以P,D,B為頂點的三角形與△BCO相似?若存在,求出DP的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在等腰△ABC中,CD是底邊AB上的高,E是腰BC的中點,AE與CD交于F,現(xiàn)給出三條路線:
(a)A→F→C→E→B→D→A;
(b)A→C→E→B→D→F→A;
(c)A→D→B→E→F→C→A;
它們的長度分別記為L(a)、L(b)及L(c),則L(a)<L(b),L(a)<L(c),L(b)<L(c)中一定能成立的是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰△ABC中,AB=AC,AD⊥BC,垂足為D,且3BC=2AD.點E、F是AD的三等分點,則∠BEC+∠BFC+∠BAC=
180°
180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰△ABC中,AB=AC,B(
3
,0
),A(2
3
3
).
(1)求點C的坐標;
(2)求△ABC的面積;
(3)如何平移△ABC,才能使A與原點O重合,并寫出此時所得的三角形三個頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在等腰△ABC中,AB=AC=13,BC=10,取BC所在的直線為x軸,且點B為原點建立直角坐標系.
(1)求△ABC三個頂點的坐標;
(2)求△ABC的面積.

查看答案和解析>>

同步練習冊答案