在△ABC中,∠C=90°,AB=3cm,BC=2cm,以點(diǎn)A為圓心,以2.5cm為半徑作圓,則點(diǎn)C和⊙A的位置關(guān)系是


  1. A.
    C在⊙A上
  2. B.
    C在⊙A外
  3. C.
    C在⊙A內(nèi)
  4. D.
    C在⊙A位置不能確定
C
分析:要確定點(diǎn)與圓的位置關(guān)系,主要確定點(diǎn)與圓心的距離與半徑的大小關(guān)系,本題可由勾股定理等性質(zhì)算出點(diǎn)與圓心的距離d.
則d>r時(shí),點(diǎn)在圓外;
當(dāng)d=r時(shí),點(diǎn)在圓上;
當(dāng)d<r時(shí),點(diǎn)在圓內(nèi).
解答:根據(jù)勾股定理得:AC==
<2.5,即點(diǎn)到圓心的距離<圓的半徑,
∴點(diǎn)在圓內(nèi).
故選C.
點(diǎn)評(píng):能夠根據(jù)勾股定理求得點(diǎn)到圓心的距離,然后根據(jù)點(diǎn)到圓心的距離和圓的半徑之間的數(shù)量關(guān)系判斷點(diǎn)和圓的位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點(diǎn)O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點(diǎn)F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點(diǎn)D,交AC于點(diǎn)E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為( 。
A、
2
B、
3
C、2
D、以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊答案