【題目】如圖,正方形ABCD中,AD5,點(diǎn)E、F是正方形ABCD內(nèi)的兩點(diǎn),且AEFC4,BEDF3,則以EF為直徑的圓的面積為( )

A. B. C. D.

【答案】A

【解析】如圖,延長(zhǎng)DFAE于點(diǎn)M,

正方形ABCD中,AD=AB=DC=5,AE=FC=4,BE=DF=3

∴△ABE≌△CDFSSS),AB2=AE2+BE2,CD2=FC2+DF2,

∴∠AEB=∠CFD=90°,∠BAE=∠DCF,

∴∠BAE+∠ABE=∠BAE+∠DAM=90°∠DCF+∠CDF=∠ADF+∠CDF=90°,

∴∠ABE=∠DAM∠ADF=∠DCF=∠BAE,

∵AB=AD

∴△ABE≌△DAMASA),

∴AM=BE=3DM=AE=4,∠AMD=∠BEA=90°,

∴ME=AE-AM=4-3-1,MF=DM-DF=4-3=1∠DME=90°,

EF=,

EF為直徑的圓的面積為: .

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn):
①﹣|﹣ |=
②﹣(﹣6)=
③(﹣1)99=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB=5,AD=,AEBD,垂足是E.點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AF、BF.

(1)求AE和BE的長(zhǎng);

(2)若將ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過(guò)的線段長(zhǎng)度).當(dāng)點(diǎn)F分別平移到線段AB、AD上時(shí),直接寫出相應(yīng)的m的值;

(3)如圖,將ABF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°α180°),記旋轉(zhuǎn)中的ABF為A′BF′,在旋轉(zhuǎn)過(guò)程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P.與直線BD交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使DPQ為等腰三角形?若存在,求出此時(shí)DQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】多項(xiàng)式1+2xy﹣3xy2的次數(shù)及最高次項(xiàng)的系數(shù)分別是(
A.3,﹣3
B.2,﹣3
C.5,﹣3
D.2,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列所給的各組線段,能組成三角形的是( 。

A. 10cm、20cm、30cm B. 20cm、30cm、40cm

C. 10cm、20cm、40cm D. 10cm、40cm、50cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)﹣2b﹣2(a﹣b)的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)概率的課堂上,老師提出問(wèn)題:只有一張電影票,小明和小剛想通過(guò)抽取撲克牌的游戲來(lái)決定誰(shuí)去看電影,請(qǐng)你設(shè)計(jì)一個(gè)對(duì)小明和小剛都公平的方案.

甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小明先抽一張,小剛從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小明看電影,否則小剛看電影.

(1)甲同學(xué)的方案公平嗎?請(qǐng)用列表或畫樹狀圖的方法說(shuō)明;

(2)乙同學(xué)將甲的方案修改為只用紅桃2、3、4三張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?(只回答,不說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知矩形A的長(zhǎng)、寬分別是2和1,那么是否存在另一個(gè)矩形B,它的周長(zhǎng)和面積分別是矩形A的周長(zhǎng)和面積的2倍?對(duì)上述問(wèn)題,小明同學(xué)從“圖形”的角度,利用函數(shù)圖象給予了解決.小明論證的過(guò)程開(kāi)始是這樣的:如果用xy分別表示矩形的長(zhǎng)和寬,那么矩形B滿足xy=6,xy=4.請(qǐng)你按照小明的論證思路完成后面的論證過(guò)程.(畫圖并簡(jiǎn)單的文字說(shuō)明)

(2)已知矩形A的長(zhǎng)和寬分別是2和1,那么是否存在一個(gè)矩形C,它的周長(zhǎng)和面積分別是矩形A的周長(zhǎng)和面積的一半?小明認(rèn)為這個(gè)問(wèn)題是肯定的,你同意小明的觀點(diǎn)嗎?為什么?(同上要求)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課本中有一道作業(yè)題:

有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.問(wèn)加工成的正方形零件的邊長(zhǎng)是多少mm?

小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問(wèn)題:

(1)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長(zhǎng)又分別為多少mm?請(qǐng)你計(jì)算.

(2)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長(zhǎng)就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案