【題目】已知:點P是平行四邊形ABCD對角線AC所在直線上的一個動點(點P不與點A、C重合),分別過點A、C向直線BP作垂線,垂足分別為E、F,點O為AC的中點.

(1)當(dāng)點P與點O重合時如圖1,求證:OE=OF
(2)直線BP繞點B逆時針方向旋轉(zhuǎn),當(dāng)點P在對角線AC上時,且∠OFE=30°時,如圖2,猜想線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?并給予證明.
(3)當(dāng)點P在對角線CA的延長線上時,且∠OFE=30°時,如圖3,猜想線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?直接寫出結(jié)論即可.

【答案】
(1)

解:∵AE⊥PB,CF⊥BP,

∴∠AEO=∠CFO=90°,

在△AEO和△CFO中,

,

∴△AOE≌△COF(AAS),

∴OE=OF


(2)

解:圖2中的結(jié)論為:CF=OE+AE

選圖2中的結(jié)論證明如下:

延長EO交CF于點G,

∵AE⊥BP,CF⊥BP,

∴AE∥CF,

∴∠EAO=∠GCO,

在△EOA和△GOC中,

,

∴△EOA≌△GOC(ASA),

∴EO=GO,AE=CG,

在Rt△EFG中,∵EO=OG,

∴OE=OF=GO,

∵∠OFE=30°,

∴∠OFG=90°﹣30°=60°,

∴△OFG是等邊三角形,

∴OF=GF,

∵OE=OF,

∴OE=FG,

∵CF=FG+CG,

∴CF=OE+AE


(3)

解:圖3中的結(jié)論為:CF=OE﹣AE

選圖3的結(jié)論證明如下:

延長EO交FC的延長線于點G,

∵AE⊥BP,CF⊥BP,

∴AE∥CF,

∴∠AEO=∠G,

在△AOE和△COG中,

,

∴△AOE≌△COG(AAS),

∴OE=OG,AE=CG,

在Rt△EFG中,∵OE=OG,

∴OE=OF=OG,

∵∠OFE=30°,

∴∠OFG=90°﹣30°=60°,

∴△OFG是等邊三角形,

∴OF=FG,

∵OE=OF,

∴OE=FG,

∵CF=FG﹣CG,

∴CF=OE﹣AE.


【解析】(1)由△AOE≌△COF即可得出結(jié)論.(2)圖2中的結(jié)論為:CF=OE+AE,延長EO交CF于點G,只要證明△EOA≌△GOC,△OFG是等邊三角形,即可解決問題.(3)圖3中的結(jié)論為:CF=OE﹣AE,延長EO交FC的延長線于點G,證明方法類似.
【考點精析】解答此題的關(guān)鍵在于理解等邊三角形的性質(zhì)的相關(guān)知識,掌握等邊三角形的三個角都相等并且每個角都是60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點D,E分別在AB,AC上,CEBC,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CF,連接EF. EFCD,求證:∠BDC90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊ABC的邊長為4, P、QR分別為邊AB、BC、AC上的動點,則PRQR的最小值是 _____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課本中有一個例題: 有一個窗戶形狀如圖1,上部是一個半圓,下部是一個矩形,如果制作窗框的材料總長為6m,如何設(shè)計這個窗戶,使透光面積最大?
這個例題的答案是:當(dāng)窗戶半圓的半徑約為0.35m時,透光面積最大值約為1.05m2
我們?nèi)绻淖冞@個窗戶的形狀,上部改為由兩個正方形組成的矩形,如圖2,材料總長仍為6m,利用圖3,解答下列問題:

(1)若AB為1m,求此時窗戶的透光面積?
(2)與課本中的例題比較,改變窗戶形狀后,窗戶透光面積的最大值有沒有變大?請通過計算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AD平分∠BACADBC,垂足為DAN△ABC外角∠CAM的平分線,CEAN,垂足為E.

(1)求證:四邊形ADCE是矩形;

(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是正方形?給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將斜邊長為4的直角三角板放在直角坐標(biāo)系xOy中,兩條直角邊分別與坐標(biāo)軸重合,P為斜邊的中點.現(xiàn)將此三角板繞點O順時針旋轉(zhuǎn)120°后點P的對應(yīng)點的坐標(biāo)是( )

A.( ,1)
B.(1,﹣
C.(2 ,﹣2)
D.(2,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將九年級部分男生擲實心球的成績進(jìn)行整理,分成5個小組(x表示成績,單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.

(1)這部分男生有多少人?其中成績合格的有多少人?
(2)這部分男生成績的中位數(shù)落在哪一組?扇形統(tǒng)計圖中D組對應(yīng)的圓心角是多少度?
(3)要從成績優(yōu)秀的學(xué)生中,隨機選出2人介紹經(jīng)驗,已知甲、乙兩位同學(xué)的成績均為優(yōu)秀,求他倆至少有1人被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程 =2的解是負(fù)數(shù),則n的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖)

(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;

月均用水量/t

頻數(shù)

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶.

查看答案和解析>>

同步練習(xí)冊答案