【題目】在平面直角坐標系xOy,直線y=x﹣1與y軸交于點A,與雙曲線y= 交于點B(m,2).
(1)求點B的坐標及k的值;
(2)將直線AB平移,使它與x軸交于點C,與y軸交于點D,若△ABC的面積為6,求直線CD的表達式.
【答案】
(1)
解:將B(m,2)代入y=x﹣1
∴2=m﹣1
∴m=3,
將B(3,2)代入y= ,
∴k=6
(2)
解:設直線CD的解析式為:y=x﹣1+b,
直線AB與x軸交于點E,
令x=0和y=0分別代入y=x﹣1,
∴y=﹣1
∴A(0,﹣1),E(1,0)
∴y=0代入y=x﹣1+b,
∴x=1﹣b
∴C(1﹣b,0)
當C在E的左側時,
此時CE=1﹣(1﹣b)=b
∴S△ABC= b(2+1)=6,
∴b=4
當C在E的右側時,
此時CE=1﹣b﹣1=﹣b
∴S△ABC= ×(﹣b)(2+1)=6,
∴b=﹣4
綜上所述,b=±4
【解析】(1)先B(m,2)代入y=x﹣1求出m的值,然后將B的坐標代入雙曲線的解析式中即可求出k的值.(2)設直線CD的解析式為:y=x﹣1+b,直線AB與x軸交于點E,然后求出點A、C、E的坐標,最后根據(jù)△ABC的面積即可求出b的值.
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD的兩條對稱軸為坐標軸,點A的坐標為(2,1).一張透明紙上畫有一個點和一條拋物線,平移透明紙,這個點與點A重合,此時拋物線的函數(shù)表達式為y=x2 , 再次平移透明紙,使這個點與點C重合,則該拋物線的函數(shù)表達式變?yōu)椋?)
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中邊AB的垂直平分線分別交BC,AB于點D,E,AE=3cm,△ADC的周長為9cm,則△ABC的周長是( )
A. 10cm B. 12cm C. 15cm D. 17cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB、CD、EF相交于點O,OG⊥CD,∠BOD=36°.
(1)求∠AOG的度數(shù);
(2)若OG是∠AOF的平分線,那么OC是∠AOE的平分線嗎?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大。
閱讀下面的解答過程,并填空(理由或數(shù)學式)
解:∵BE∥GF(已知)
∴∠2=∠3( )
∵∠1=∠3( )
∴∠1=( )( )
∴DE∥( )( )
∴∠EDB+∠DBC=180°( )
∴∠EDB=180°﹣∠DBC(等式性質(zhì))
∵∠DBC=( )(已知)
∴∠EDB=180°﹣70°=110°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究:
如圖①,在△ABC中,點D、E、F分別在邊AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度數(shù).請將下面的解答過程補充完整,并填空(理由或數(shù)學式):
解:∵DE∥BC( )
∴∠DEF= ( )
∵EF∥AB
∴ =∠ABC( )
∴∠DEF=∠ABC( )
∵∠ABC=65°
∴∠DEF=
應用:
如圖②,在△ABC中,點D、E、F分別在邊AB、AC、BC的延長線上,且DE∥BC,EF∥AB,若∠ABC=β,則∠DEF的大小為 (用含β的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,AP′⊥AB,BP′交 AC 于點 P, AP=AP′.
(1)求證:∠CBP=∠ABP;
(2)過點 P′作 P′E⊥AC 于點 E,求證:AE=CP.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填空,完成下列說理過程
如圖,∠AOB=90°,∠COD=90°,OA平分∠DOE,若∠BOC=20°,求∠COE的度數(shù)
解:因為∠AOB=90°.
所以∠BOC+∠AOC=90°
因為∠COD=90°
所以∠AOD+∠AOC=90°.
所以∠BOC=∠AOD. ( )
因為∠BOC=20°.
所以∠AOD=20°.
因為OA平分∠DOE
所以∠ =2∠AOD= °. ( )
所以∠COE=∠COD﹣∠DOE= °
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com