【題目】已知在四邊形ABCD中,∠A=x,∠C=y,(x180°,y180°).

1)∠ABC+ADC=_____(用含xy的代數(shù)式表示);

2)如圖1,若x=y=90°DE平分∠ADCBF平分與∠ABC相鄰的外角,請(qǐng)寫(xiě)出DEBF的位置關(guān)系,并說(shuō)明理由.

3)如圖2,∠DFB為四邊形ABCD的∠ABC、∠ADC相鄰的外角平分線(xiàn)所在直線(xiàn)構(gòu)成的銳角,

①當(dāng)xy時(shí),若x+y=140°,∠DFB=30°試求x、y

②小明在作圖時(shí),發(fā)現(xiàn)∠DFB不一定存在,請(qǐng)直接指出x、y滿(mǎn)足什么條件時(shí),∠DFB不存在.

【答案】1360°-x-y;(2DEBF,理由見(jiàn)解析;(3)①;②當(dāng)x、y滿(mǎn)足x=y時(shí),∠DFB不存在.

【解析】

1)利用四邊形內(nèi)角和定理得出答案即可;(2)利用角平分線(xiàn)的性質(zhì)結(jié)合三角形外角的性質(zhì)得出即可;(3)①利用角平分線(xiàn)的性質(zhì)以及三角形內(nèi)角和定理,得出∠DFB=y-x=30°,進(jìn)而得出x,y的值;②當(dāng)x=y時(shí),∠ABC、∠ADC相鄰的外角平分線(xiàn)所在直線(xiàn)互相平行,此時(shí)∠DFB不存在.

1)∵四邊形內(nèi)角和為(4-2×180°=360°,

∴∠ABC+ADC=360°-x-y

故答案為:360°-x-y

(2)DEBF,理由如下:

如圖:延長(zhǎng)DEBFG,

DE平分∠ADC,BF平分∠MBC

∴∠CDE=ADC,∠CBF=CBM,

x=y=90°,

∴∠CBM=180°-∠ABC=180°(180°-∠ADC)=ADC,

∴∠CDE=CBF,

∵∠BED=CDE+C=CBF+BGE,

∴∠BGE=C=90°,

DGBF,即DEBF

(3)①如圖,連接DB,

∵∠A+ADC+C+ABC=360°,∠CDN=180°-ADC,∠CBM=180°-ABC,

∴∠CDN+CBM=A+C=x+y

BF、DF分別平分∠CBM、∠CDN,

∴∠CDF+CBF=(x+y),

∴∠FBD+FDB=180°-y+(x+y)=180°-y+x,

∴∠DFB=180°-(FBD+FDB)=y-x=30°

解方程組:,

解得:,

x=40°,y=100°.

②當(dāng)x=y時(shí),此時(shí)∠DFB=0,即∠ABC、∠ADC相鄰的外角平分線(xiàn)所在直線(xiàn)互相平行,故當(dāng)x、y滿(mǎn)足x=y時(shí),∠DFB不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動(dòng)一個(gè)單位,得到(0,1),(1,1),(1,0),(2,0),…那么點(diǎn)的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ ABC 和△ADE都是等邊三角形,點(diǎn) B ED 的延長(zhǎng)線(xiàn)上.

1)求證:△ABD≌△ACE

2)求證:AECE=BE

3)求∠BEC 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,有一塊直角三角板XYZ放置在ABC上,恰好三角板XYZ的兩條直角邊XYXZ分別經(jīng)過(guò)點(diǎn)B、C直角頂點(diǎn)XABC內(nèi)部,若∠A=30,則∠ABC+ACB=_____,∠XBC+XCB=________

2)如圖2,改變直角三角板XYZ的位置,使三角板XYZ的兩條直角邊XY、XZ仍然分別經(jīng)過(guò)點(diǎn)B、C,直角頂點(diǎn)X還在ABC內(nèi)部,那么∠ABX+ACX的大小是否變化?若變化,請(qǐng)舉例說(shuō)明;若不變化,請(qǐng)求出∠ABX+ACX的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)要求回答問(wèn)題:
(1)【問(wèn)題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,求線(xiàn)段BE與AF的數(shù)量關(guān)系

(2)【拓展研究】
在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線(xiàn)段BE與AF的數(shù)量關(guān)系有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;

(3)【問(wèn)題發(fā)現(xiàn)】
當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線(xiàn)時(shí)候,直接寫(xiě)出線(xiàn)段AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一根長(zhǎng)為5米的竹竿AB斜立于墻MN的右側(cè),底端B與墻角N 的距離為3米,當(dāng)竹竿頂端A下滑x米時(shí),底端B便隨著向右滑行y米,反映y與x變化關(guān)系的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題

(1)21+(16)(13);

(2)25÷5×()÷();

(3)99×(17)

(4)42+1÷||×(2)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖Rt△ABCRt△A′B′C′,∠C∠C′90°那么在下列各條件中,不能判定Rt△ABC≌Rt△A′B′C′的是( )

A. ABA′B′5,BCB′C′3 B. ABB′C′5,∠A∠B′40°

C. ACA′C′5,BCB′C′3 D. ACA′C′5∠A∠A′40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市規(guī)劃中某地段地鐵線(xiàn)路要穿越護(hù)城河PQ,站點(diǎn)A和站點(diǎn)B在河的兩側(cè),要測(cè)算出A、B間的距離.工程人員在點(diǎn)P處測(cè)得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達(dá)點(diǎn)Q出,測(cè)得A位于北偏東49°方向,B位于南偏西41°方向.根據(jù)以上數(shù)據(jù),求A、B間的距離.(參考數(shù)據(jù):cos41°≈0.75)

查看答案和解析>>

同步練習(xí)冊(cè)答案