解:(1)∠BOC=90°+
∠A.理由如下:
∵∠BOC=180°-∠OBC-∠OCB,
∴2∠BOC=360°-2∠OBC-2∠OCB,
而BO平分∠ABC,CO平分∠ACB,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴2∠BOC=360°-(∠ABC+∠ACB),
∵∠ABC+∠ACB=180°-∠A,
∴2∠BOC=180°+∠A,
∴∠BOC=90°+
∠A.
當∠A=50°,∠BOC=115°;
(2)∠BOC=
∠A.理由如下:
∵∠OCE=∠BOC+∠OBC,∠ACE=∠ABC+∠A,
而BO平分∠ABC,CO平分∠ACE,
∴∠ACE=2∠OCE,∠ABC=2∠OBC,
∴2∠BOC+2∠OBC=∠ABC+∠A,
∴2∠BOC=∠A,
即∠BOC=
∠A.
當∠A=50°,∠BOC=25°;
(3)∠BOC=90°-
∠A.
當∠A=50°,∠BOC=65°.
分析:(1)根據(jù)三角形內角和定理得到∠BOC=180°-∠OBC-∠OCB,則2∠BOC=360°-2∠OBC-2∠OCB,再根據(jù)角平分線的定義得∠ABC=2∠OBC,∠ACB=2∠OCB,則2∠BOC=360°-∠ABC-∠ACB,易得∠BOC=90°+
∠A.
(2)根據(jù)角平分線的定義得∠ACE=2∠OCE,∠ABC=2∠OBC,由三角形外角的性質有∠OCE=∠BOC+∠OBC,∠ACE=∠ABC+∠A,則2∠BOC+2∠OBC=∠ABC+∠A,即可得到∠BOC=
∠A;
(3)根據(jù)三角形內角和定理和外角性質可得到∠BOC=90°-
∠A.
點評:本題考查了三角形內角和定理:三角形內角和為180°.也考查了三角形外角的性質以及角平分線的定義.