在數(shù)的前面添加“+”或“-”,使它們的和為1,請寫出兩個算式:

①________;

②________.

答案:略
解析:

因為2345678944,所以添“+”、“-”號后,正數(shù)的和為27,負(fù)數(shù)的和為-17即可.參考答案:

;


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

鐘面數(shù)字問題
如圖,鐘面上有1,2,3,…,11,12這12個數(shù)字.
(1)試在某些數(shù)的前面添加負(fù)號,使它們的代數(shù)和為零
(2)能否改變鐘面上的數(shù),比如只剩下6個偶數(shù),仍按第(1)小題的要求來做?
[思路探究]
(1)我們先試著選定任意幾個數(shù)字,在其前面添加負(fù)號,如
-12-11-10+9+8+7+6-5+4+3+2+1-2.
這當(dāng)然不是我們要的答案,但我們可以將其調(diào)整,比如改變1前面的符號,得
-12-11-10+9+8+7+6-5+4+3+2-1-0.
用這種方法當(dāng)然可以得到許多答案,但我們并不滿足.我們希望尋找其中的規(guī)律,使我們能找到更多的解答.我們發(fā)現(xiàn):
在調(diào)整符號的過程中,若將一個正數(shù)變號,12個數(shù)的代數(shù)和就減少這個正數(shù)的兩倍;若將一個負(fù)數(shù)變號,12個數(shù)的代數(shù)和就增加這個負(fù)數(shù)的絕對值的兩倍.
要使12個數(shù)的代數(shù)和為零,其中正數(shù)的和的絕對值必須與負(fù)數(shù)的和的絕對值相等,均為12個數(shù)之和的-半,即等于39.
由此,我們只要找到幾個和為39的數(shù),將這些數(shù)添上負(fù)號即可.
由于最大3個數(shù)之和為33<39,因此必須再添上一個6才有解答,所以添加負(fù)號的數(shù)至少要有4個.同理可知,添加負(fù)號的數(shù)最多不超過8個.
根據(jù)以上規(guī)律,就能在很短的時間內(nèi)得到許多解答,但是要寫出所有解答,還必須把答案作適當(dāng)?shù)姆诸悾绢}共有124個解答,親愛的讀者,你能寫出這124個解答來嗎?
(2)因為2+4+6+8+10+12-42,它的一半為21,而奇數(shù)不可能通過偶數(shù)求和得到,所以只剩下6個偶數(shù)時,不能按第(1)小題的要求來做.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索題:
(1)設(shè)n表示任意一個整數(shù),則用含有n的代數(shù)式表示任意一個偶數(shù)為
2n
2n
,用含有n的代數(shù)式表示任意一個奇數(shù)為
2n+1或2n-1
2n+1或2n-1
;
(2)用舉例驗證的方法探索:任意兩個整數(shù)的和與這兩個數(shù)的差是否同時為奇數(shù)或同時為偶數(shù)?你的結(jié)論是
(填“是”或“否”);
(3)設(shè)a、b是任意的兩個整數(shù),試用“用字母表示數(shù)”的方法并分情況來說明a+b和a-b是否“同奇”或“同偶”?并進一步得出一般性的結(jié)論.
例:①設(shè)a=2m,b=2n.
則a+b=2m+2n=2(m+n);a-b=2m-2n=2(m-n);
此時a+b和a-b同時為偶數(shù).
請你仿照以上的方法并考慮其余所有可能的情況加以計算和說明;
(4)以(3)的結(jié)論為基礎(chǔ)進一步探索:-a+b、-a-b、a+b、a-b是否“同奇”“同偶”?
(5)應(yīng)用第(2)、(3)、(4)的結(jié)論完成:在2014個自然數(shù)1,2,3,…,2013,2014的每一個數(shù)的前面任意添加“+”或“-”,則其代數(shù)和一定是
奇數(shù)
奇數(shù)
(填“奇數(shù)”或“偶數(shù)”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

鐘面上有1,2,3,…,11,12共十二個數(shù)字,如圖所示.

(1)試在某些數(shù)的前面添加負(fù)號,使它們的代數(shù)和為零;

(2)能否改變鐘面上的數(shù),比如只剩下六個偶數(shù),仍按第(1)小題的要求來做?

(3)請試著改變第(1)小題,使它更加有趣些,比如:哪些時間里分針和時針?biāo)鶌A的那些數(shù)的前面添加負(fù)號,鐘面上的各數(shù)的代數(shù)和為零;

(4)在解上述各題的過程中,你能總結(jié)出一些什么數(shù)學(xué)規(guī)律?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

作業(yè)寶鐘面數(shù)字問題
如圖,鐘面上有1,2,3,…,11,12這12個數(shù)字.
(1)試在某些數(shù)的前面添加負(fù)號,使它們的代數(shù)和為零
(2)能否改變鐘面上的數(shù),比如只剩下6個偶數(shù),仍按第(1)小題的要求來做?
[思路探究]
(1)我們先試著選定任意幾個數(shù)字,在其前面添加負(fù)號,如
-12-11-10+9+8+7+6-5+4+3+2+1-2.
這當(dāng)然不是我們要的答案,但我們可以將其調(diào)整,比如改變1前面的符號,得
-12-11-10+9+8+7+6-5+4+3+2-1-0.
用這種方法當(dāng)然可以得到許多答案,但我們并不滿足.我們希望尋找其中的規(guī)律,使我們能找到更多的解答.我們發(fā)現(xiàn):
在調(diào)整符號的過程中,若將一個正數(shù)變號,12個數(shù)的代數(shù)和就減少這個正數(shù)的兩倍;若將一個負(fù)數(shù)變號,12個數(shù)的代數(shù)和就增加這個負(fù)數(shù)的絕對值的兩倍.
要使12個數(shù)的代數(shù)和為零,其中正數(shù)的和的絕對值必須與負(fù)數(shù)的和的絕對值相等,均為12個數(shù)之和的-半,即等于39.
由此,我們只要找到幾個和為39的數(shù),將這些數(shù)添上負(fù)號即可.
由于最大3個數(shù)之和為33<39,因此必須再添上一個6才有解答,所以添加負(fù)號的數(shù)至少要有4個.同理可知,添加負(fù)號的數(shù)最多不超過8個.
根據(jù)以上規(guī)律,就能在很短的時間內(nèi)得到許多解答,但是要寫出所有解答,還必須把答案作適當(dāng)?shù)姆诸悾绢}共有124個解答,親愛的讀者,你能寫出這124個解答來嗎?
(2)因為2+4+6+8+10+12-42,它的一半為21,而奇數(shù)不可能通過偶數(shù)求和得到,所以只剩下6個偶數(shù)時,不能按第(1)小題的要求來做.

查看答案和解析>>

同步練習(xí)冊答案