【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與軸交于點.
(1)求該拋物線的解析式;
(2)P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求點P的坐標;
(3)作直線BC,若點Q是直線BC下方拋物線上的一動點,三角形QBC面積是否有最大值,若有,請求出此時Q點的坐標;若沒有,請說明理由.
【答案】(1)y=x2-2x-3;(2)P點的坐標為( 0,)或( 0,);(3)點Q(, - ).
【解析】
(1)把A(﹣1,0),B(3,0)兩點代入y=-x2+bx+c即可求出拋物線的解析式;
(2)由A(﹣1,0),B(3,0)可得AB=4,由△PAB是以AB為腰的等腰三角形,可分兩種情況PA=AB=4時,PB=AB=4時,根據(jù)勾股定理分別求出OP的長即可求解;
(3)由拋物線得C(0,-3),求出直線BC的解析式,過點Q作QM∥y軸,交BC于點M,設(shè)Q(x,x2-2x-3),則M(x,x-3),根據(jù)三角形QBC面積S=QMOB得出二次函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)即可求出Q點坐標及△QBC面積的最大值
解:(1)因為拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,
所以可得解得.
所以該拋物線的解析式為:y=x2-2x-3;
(2)由A(﹣1,0),B(3,0)可得AB=4.
因為P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,可得PA=4或PB=4.
當(dāng)PA=4時,因為A(﹣1,0),所以OP==,所以P( 0,);
當(dāng)PB=4時,因為B(3,0),所以OP==,所以P( 0,);
所以P點的坐標為( 0,)或( 0,);
(3)對于y=x2-2x-3,當(dāng)x=0時,y= -3,所以點C(0,-3)
設(shè)直線BC的解析式為:y=kx+b(k≠0),B(3,0),C(0,-3)
可得解得所以直線BC的解析式為:y=x-3.
過點Q作QM∥y軸,交BC于點M,設(shè)Q(x,x2-2x-3),則M(x,x-3).
所以三角形QBC的面積為S=QMOB=[( x-3)-(x2-2x-3)]×3
= -x2+x.
因為a=-<0,函數(shù)圖象開口方向向下,所以函數(shù)有最大值,即三角形QBC面積有最大值.此時,x= -=,此時Q點的縱坐標為-,所以點Q(,-).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從相距420km的A、B兩地相向而行,乙車比甲車先出發(fā)1小時,兩車分別以各自的速度勻速行駛,途經(jīng)C地(A、B、C三地在同一條直線上).甲車到達C地后因有事立即按原路原速返回A地,乙車從B地直達A地,甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車行駛所用的時間x(小時)的關(guān)系如圖所示,結(jié)合圖象信息回答下列問題:
(1)甲車的速度是 千米/時,乙車的速度是 千米/時;
(2)求甲車距它出發(fā)地的路程y(千米)與它行駛所用的時間x(小時)之間的函數(shù)關(guān)系式;
(3)甲車出發(fā)多長時間后兩車相距90千米?請你直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC與BD交于點O,DE∥AC交BA的延長線于點E.
(1)求證:BD=DE;
(2)若∠ACB=30°,BD=8,求四邊形BCDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯誤的是
A. 連續(xù)拋一均勻硬幣2次必有1次正面朝上
B. 連續(xù)拋一均勻硬幣10次都可能正面朝上
C. 大量反復(fù)拋一均勻硬幣,平均100次出現(xiàn)正面朝上50次
D. 通過拋一均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中有點A(﹣4,0)、B(0,3)、P(a,﹣a)三點,線段CD與AB關(guān)于點P中心對稱,其中A、B的對應(yīng)點分別為C、D
(1)當(dāng)a=﹣4時
①在圖中畫出線段CD,保留作圖痕跡
②線段CD向下平移 個單位時,四邊形ABCD為菱形;
(2)當(dāng)a= 時,四邊形ABCD為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,如果過項點的一條直線把這個三角形分割成兩個三角形,其中一個為等腰三角形,另一個為直角三角形,則稱這條直線為的關(guān)于點的二分割線.例如:如圖1,中,,,若過頂點的一條直線交于點,若,顯然直線是的關(guān)于點的二分割線.
(1)在圖2的中,,.請在圖2中畫出關(guān)于點的二分割線,且角度是 ;
(2)已知,在圖3中畫出不同于圖1,圖2的,所畫同時滿足:①為最小角;②存在關(guān)于點的二分割線.的度數(shù)是 ;
(3)已知,同時滿足:①為最小角;②存在關(guān)于點的二分割線.請求出的度數(shù)(用表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx﹣5交y軸于點A,交x軸于點B(﹣5,0)和點C(1,0),過點A作AD∥x軸交拋物線于點D.
(1)求此拋物線的表達式;
(2)點E是拋物線上一點,且點E關(guān)于x軸的對稱點在直線AD上,求△EAD的面積;
(3)若點P是直線AB下方的拋物線上一動點,當(dāng)點P運動到某一位置時,△ABP的面積最大,求出此時點P的坐標和△ABP的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量校園內(nèi)一棵不可攀的樹的高度,學(xué)校數(shù)學(xué)應(yīng)用實踐小組做了如下的探索:根據(jù)光的反射定律,利用一面鏡子和皮尺,設(shè)計如圖所示的測量方案:把鏡子放在離樹AB的樹根7.2m的點E處,然后觀測者沿著直線BE后退到點D,這時恰好在鏡子里看到樹梢頂點A,再用皮尺量得DE=2.4m,觀測者目高CD=1.6m,則樹高AB約是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com