【題目】目前中學(xué)生帶手機(jī)進(jìn)校園現(xiàn)象越來越受到社會關(guān)注,針對這種現(xiàn)象,某校數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了學(xué)校若干名家長對“中學(xué)生帶手機(jī)”現(xiàn)象的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.贊成;D.反對),并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計圖1和扇形統(tǒng)計圖2(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長;
(2)求出圖2中扇形C所對的圓心角的度數(shù),并將圖1補(bǔ)充完整;
(3)根據(jù)抽樣調(diào)查結(jié)果,請你估計1萬名中學(xué)生家長中有多少名家長持反對態(tài)度;
(4)在此次調(diào)查活動中,初三(1)班和初三(2)班各有2位家長對中學(xué)生帶手機(jī)持反對態(tài)度,現(xiàn)從這4位家長中選2位家長參加學(xué)校組織的家;顒樱昧斜矸ɑ虍嫎錉顖D的方法求選出的2人來自不同班級的概率.
【答案】(1)共調(diào)查的中學(xué)生家長數(shù)是200人;(2)18°,補(bǔ)圖見解析;(3)10000名中學(xué)生家長中有6000名家長持反對態(tài)度;(4).
【解析】
(1)用B類的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);
(2)用360°乘以C類所占的百分比得到扇形C所對的圓心角的度數(shù),再計算出C類人數(shù),然后補(bǔ)全條形統(tǒng)計圖;
(3)用10000乘以D類的百分比可估計持反對態(tài)度的家長的總數(shù);
(4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出2人來自不同班級的結(jié)果數(shù),然后根據(jù)概率公式求解.
解:
(1)共調(diào)查的中學(xué)生家長數(shù)是:40÷20%=200(人);
(2)扇形C所對的圓心角的度數(shù)是:360°×(1﹣20%﹣15%﹣60%)=18°,
C類的人數(shù)是:200×(1﹣20%﹣15%﹣60%)=10(人),
補(bǔ)圖如下:
(3)根據(jù)題意得:
10000×60%=6000(人),
答:10000名中學(xué)生家長中有6000名家長持反對態(tài)度;
(4)設(shè)初三(1)班兩名家長為A1,A2,初三(2)班兩名家長為B1,B2,
畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中2人來自不同班級共有8種,
所以選出的2人來自不同班級的概率=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會嚴(yán)重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以點(diǎn)AB為直徑的⊙O分別與AC,BC交于點(diǎn)E,D,且BD=CD.
(1)求證:∠B=∠C .
(2)過點(diǎn)D作DF⊥OD,過點(diǎn)F作FH⊥AB.若AB=5,CD=,求AH的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一個扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為( )
A. 6π﹣B. 6π﹣9C. 12π﹣D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,四邊形ABCD為矩形,點(diǎn)O是AC的中點(diǎn),過點(diǎn)O的一直線分別與AB、CD交于點(diǎn)E、F,連接BF交AC于點(diǎn)M,連接DE、BO,若∠COB=60°,FO=FC,則下列結(jié)論:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MB:OE=3:2,其中正確結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點(diǎn)E是△ABC的內(nèi)心,過點(diǎn)E作EF∥AB交AC于點(diǎn)F,則EF的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長線上,點(diǎn)C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的有_____.(填序號)
①的平方根是±3
②絕對值等于它本身的數(shù)一定是正數(shù)
③關(guān)于x的一元二次方程(m﹣2)x2+2x+1=0有實數(shù)根,則m的取值范圍是m≤3
④如果一個多邊形的內(nèi)角和是外角和的3倍,則這個多邊形的邊數(shù)是8
⑤觀察下列單項式2x,﹣4x2,8x3,﹣16x4,…,則第7個單項式是128x7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com