【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
【答案】(1)見解析;
(2)四邊形ADCF是正方形.
【解析】
試題分析:(1)由E是AD的中點(diǎn),AF∥BC,易證得△AEF≌△DEB,即可得AD=BD,又由在△ABC中,∠BAC=90°,AD是中線,根據(jù)直角三角形斜邊的中線等于斜邊的一半,即可證得AD=BD=CD=BC,即可證得:AD=AF;
(2)由AF=BD=DC,AF∥BC,可證得:四邊形ADCF是平行四邊形,又由AB=AC,根據(jù)三線合一的性質(zhì),可得AD⊥BC,AD=DC,繼而可得四邊形ADCF是正方形.
試題解析:(1)∵AF∥BC,
∴∠EAF=∠EDB,
∵E是AD的中點(diǎn),
∴AE=DE,
在△AEF和△DEB中,
∠EAF=∠EDB,AE=DE,∠AEF=∠DEB,
∴△AEF≌△DEB(ASA),
∴AF=BD,
∵在△ABC中,∠BAC=90°,AD是中線,
∴AD=BD=DC=BC,
∴AD=AF;
(2)四邊形ADCF是正方形.
∵AF=BD=DC,AF∥BC,
∴四邊形ADCF是平行四邊形,
∵AB=AC,AD是中線,
∴AD⊥BC,
∵AD=AF,
∴四邊形ADCF是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、O是正方形網(wǎng)格上的三個(gè)格點(diǎn),⊙O的半徑為OA,點(diǎn)P是優(yōu)弧 上的一點(diǎn),則cos∠APB的值是( )
A.45°
B.1
C.
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為5的⊙A中,弦BC,ED所對(duì)的圓心角分別是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,則弦BC的長等于( )
A.8
B.10
C.11
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)報(bào)名參加校運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:
徑賽項(xiàng)目:100m,200m,400m(分別用A1、A2、A3表示);
田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用B1、B2表示).
該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是ABCD的對(duì)角線,∠BAC=∠DAC.
(1)求證:AB=BC;
(2)若AB=2,AC=2,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將ABCD的邊DC延長到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.
(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一坐標(biāo)系中,一次函數(shù)y=ax+b與二次函數(shù)y=ax2﹣b的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)計(jì)劃用元從廠家購進(jìn)臺(tái)新型電子產(chǎn)品,已知該廠家生產(chǎn)甲、乙、丙三種不同型號(hào)的電子產(chǎn)品,設(shè)甲、乙型設(shè)備應(yīng)各買入臺(tái),其中每臺(tái)的價(jià)格、銷售獲利如下表:
甲型 | 乙型 | 丙型 | |
價(jià)格(元/臺(tái)) | |||
銷售獲利(元/臺(tái)) |
購買丙型設(shè)備 臺(tái)(用含的代數(shù)式表示) ;
若商場(chǎng)同時(shí)購進(jìn)三種不同型號(hào)的電子產(chǎn)品(每種型號(hào)至少有一臺(tái)),恰好用了元,則商場(chǎng)有哪幾種購進(jìn)方案?
在第題的基礎(chǔ)上,為了使銷售時(shí)獲利最多,應(yīng)選擇哪種購進(jìn)方案?此時(shí)獲利為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
材料一:分解因式是將一個(gè)多項(xiàng)式化為若干個(gè)整式積的形式的變形,“十字相乘法”可把某些二次三項(xiàng)式分解為兩個(gè)一次式的乘積,具體做法如下:對(duì)關(guān)于,的二次三項(xiàng)式,如圖1,將項(xiàng)系數(shù),作為第一列,項(xiàng)系數(shù),作為第二列,若恰好等于項(xiàng)的系數(shù),那么可直接分解因式為:
示例1:分解因式:
解:如圖2,其中,,而;
∴;
示例2:分解因式:.
解:如圖3,其中,,而;
∴;
材料二:關(guān)于,的二次多項(xiàng)式也可以用“十字相乘法”分解為兩個(gè)一次式的乘積.如圖4,將作為一列,作為第二列,作為第三列,若,,,即第1、2列,第1、3列和第2、3列都滿足十字相乘規(guī)則,則原式分解因式的結(jié)果為:;
示例3:分解因式:.
解:如圖5,其中,,;
滿足,;
∴
請(qǐng)根據(jù)上述材料,完成下列問題:
(1)分解因式: ; ;
(2)若,,均為整數(shù),且關(guān)于,的二次多項(xiàng)式可用“十字相乘法”分解為兩個(gè)一次式的乘積,求出的值,并求出關(guān)于,的方程的整數(shù)解.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com