【題目】對四邊形ABCD添加以下條件,使之成為平行四邊形,正面的添加不正確的是( )
A. AB∥CD,AD=BCB. AB=CD,AB∥CD
C. AB=CD,AD=BCD. AC與BD互相平分
【答案】A
【解析】
根據(jù)平行四邊形的判定方法依次判定各項(xiàng)后即可解答.
選項(xiàng)A,AB∥CD,AD=BC,一組對邊平行,另一組對邊相等的四邊形不一定是平行四邊形,選項(xiàng)A不能夠判定四邊形ABCD是平行四邊形;
選項(xiàng)B,AB=CD,AB∥CD,一組對邊平行且相等的四邊形是平行四邊形,選項(xiàng)B能夠判定四邊形ABCD是平行四邊形;
選項(xiàng)C,AB=CD,AD=BC,兩組對邊分別相等的四邊形是平行四邊形,選項(xiàng)C能夠判定四邊形ABCD是平行四邊形;
選項(xiàng)D,AC與BD互相平分,對角線互相平分的四邊形是平行四邊形,選項(xiàng)D能夠判定四邊形ABCD是平行四邊形.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給出五個(gè)等量關(guān)系:①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA.
請你以其中兩個(gè)為條件,另外三個(gè)中的一個(gè)為結(jié)論,推出一個(gè)正確的結(jié)論(只需寫出一種情況),并加以證明.
已知:
求證:
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,
(1)求k的值;
(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;
(3)過原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.
(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?
(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?
(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費(fèi)用不會(huì)改變,每套甲種套房提升費(fèi)用將會(huì)提高a萬元(a>0),市政府如何確定方案才能使費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
快放寒假了,小宇來到書店準(zhǔn)備購買一些課外讀物在假期里閱讀.在選完書結(jié)賬時(shí),收銀員告訴小宇,如果花20元辦理一張會(huì)員卡,用會(huì)員卡結(jié)賬買書,可以享受8折優(yōu)惠.小宇心算了一下,覺得這樣可以節(jié)省13元,很合算,于是采納了收銀員的意見.請根據(jù)以上信息解答下列問題:
(1)你認(rèn)為小宇購買 元以上的書,辦卡就合算了;
(2)小宇購買這些書的原價(jià)是多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】7張如圖1的長為a,寬為b(a>b)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個(gè)矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時(shí),按照同樣的放置方式,S始終保持不變,則a,b滿足( )
A.a=bB.a=3bC.a=bD.a=4b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線PQ,過點(diǎn)A作AQ⊥PQ于點(diǎn)Q,連接AP.
(1)填空:拋物線的解析式為 ,點(diǎn)C的坐標(biāo) ;
(2)點(diǎn)P在拋物線上運(yùn)動(dòng),若△AQP∽△AOC,求點(diǎn)P的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P位于拋物線的對稱軸的右側(cè),若將△APQ沿AP對折,點(diǎn)Q的對應(yīng)點(diǎn)為點(diǎn)Q',請直接寫出當(dāng)點(diǎn)Q'落在坐標(biāo)軸上時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D,E分別在AC,AB上,且AD=AE,點(diǎn)O是BD和CE的交點(diǎn),則:①△ABD≌△ACE;②△BOE≌△COD;③點(diǎn)O在∠BAC的平分線上,以上結(jié)論( )
A.都正確B.都不正確
C.只有一個(gè)正確D.只有一個(gè)不正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com