【題目】如圖,△ABC中,AD⊥BC,點(diǎn)E在AC的垂直平分線上,且BD=DE.
(1)如果△ABC的周長(zhǎng)為14cm,AC=6cm,那么△ABE的周長(zhǎng)=____;
(2)你發(fā)現(xiàn)線段AB與BD的和等于圖中哪條線段的長(zhǎng)?請(qǐng)證明你的結(jié)論.
【答案】8cm
【解析】
(1)通過(guò)線段的等量代換即可求解;
(2)由AD⊥BC,BD=DE,點(diǎn)E在AC的垂直平分線上,根據(jù)線段垂直平分線的性質(zhì),可得AE=EC,AB=AE,繼而證得AB+BD=AE+DE=DC.
(1) ∵點(diǎn)E在AC的垂直平分線上,
∴AE=CE,
∵AD⊥BC
∴∠ADB=∠ADE
在△ABD和△ADE中
∴△ABD≌△ADE(SAS)
∴AB=AE,
又∵△ABE的周長(zhǎng)是:AB+BE+AE,
∴△ABE的周長(zhǎng)=AB+BE+CE=AB+BC,
∵△ABC的周長(zhǎng)為14cm,AC=6cm,
∴AB+BC=14-6=8,
∴△ABE的周長(zhǎng)=AB+BC=8cm.
故答案為:8;
(2) AB+BD=DC.證明如下:
∵AD⊥BC,BD=DE,AD=AD,
∴△ABD≌△AED(SAS),
∴,AB=AE.
又∵點(diǎn)E在AC的垂直平分線上,
∴AE=EC,
∴AB=EC.
∴AB+BD=EC+DE=DC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一副直角三角尺疊放如圖 1 所示,現(xiàn)將 45°的三角尺ADE 固定不動(dòng),將含 30°的三角尺 ABC 繞頂點(diǎn) A 順時(shí)針轉(zhuǎn)動(dòng)(旋轉(zhuǎn)角不超過(guò) 180 度),使兩塊三角尺至少有一組邊互相平行.如圖 2:當(dāng)∠BAD=15°時(shí),BC∥DE.則∠BAD(0°<∠BAD<180°)其它所有可能符合條件的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PAB=∠PBC,則線段CP長(zhǎng)的最小值為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)計(jì)劃把甲種貨物1240噸和乙種貨物880噸用一列貨車(chē)運(yùn)往某地,已知這列貨車(chē)掛在A、B兩種不同規(guī)格的貨車(chē)廂共40節(jié),使用A型車(chē)廂每節(jié)費(fèi)用為6000元,使用B型車(chē)廂每節(jié)費(fèi)用為8000元.
(1)設(shè)運(yùn)送這批貨物的總費(fèi)用為y萬(wàn)元,這列貨車(chē)掛A型車(chē)廂x 節(jié),試定出用車(chē)廂節(jié)數(shù)x表示總費(fèi)用y的公式.
(2)如果每節(jié)A型車(chē)廂最多可裝甲種貨物35噸和乙種貨物15噸,每節(jié)B型車(chē)廂最多可裝甲種貨物25噸和乙種貨物35噸,裝貨時(shí)按此要求安排A、B兩種車(chē)廂的節(jié)數(shù),那么共有哪幾種安排車(chē)廂的方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOD=150°,OB、OC、OM、ON 是∠AOD 內(nèi)的射線,若∠BOC=20°,∠AOB=10°,OM 平分∠AOC,ON 平分∠BOD,當(dāng)∠BOC 在∠AOD 內(nèi)繞著點(diǎn) O以 3°/秒的速度逆時(shí)針旋轉(zhuǎn) t 秒時(shí),當(dāng)∠AOM:∠DON=3:4 時(shí),則 t=____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題。
(1)計(jì)算題:|﹣3|+ tan30°﹣ ﹣(2017﹣π)0+( )﹣1
(2)計(jì)算題:(x﹣2﹣ )÷
(3)解不等式組: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,則下列結(jié)論不正確的是
A. BF=DF B. ∠1=∠EFD C. BF>EF D. FD∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)A(﹣2,0)B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C.
(1)求拋物線的解析式;
(2)若點(diǎn)E在拋物線的對(duì)稱(chēng)軸上,且A、O、D、E為頂點(diǎn)是四邊形是平行四邊形,求點(diǎn)D的坐標(biāo).
(3)P是拋物線上的第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P,使得以P、M、A為頂點(diǎn)的三角形△BOC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC邊上的一點(diǎn),連結(jié)AE、BD且AE=AB.
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com