【題目】一家水果店以每斤2元的價格購進(jìn)某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是多少斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,且保證每天至少售出260斤,那么水果店需將每斤的售價降低多少元?

【答案】(1) 100+200x;(2) 1元.

【解析】試題分析

1)由題意可得:每天的銷售量為: ,再化簡即可得到所求答案;

2)由題意可知當(dāng)降價元時,每斤可盈利元,此時銷售量為: 斤,由兩者相乘等于300即可列出方程,解方程即可求得需降價多少元時才能盈利300元,再由每天銷售量不低于260斤檢驗(yàn)即可得到正確答案.

試題解析

(1)將這種水果每斤的售價降低x,則每天的銷售量是100+×20=100+200x();

(2)根據(jù)題意得:(42x)(100+200x)=300,

解得:x=x=1

當(dāng)x=,銷售量是100+200×12=200<260不合題意,舍去;

當(dāng)x=1,銷售量是100+200=300>260符合題意.

∴x=1.

答:張阿姨需將每斤的售價降低1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程 x2-6x+m+4=0有兩個實(shí)數(shù)根 x1,x2.

1)求m的取值范圍;

2)若 x1,x2滿足x2-2x1=-3 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠1+∠2180°,∠B=∠D,CD平分∠ACF

1DEBF平行嗎?請說明理由.

2ABCD位置關(guān)系如何?為什么?

3AB平分∠CAE嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有大小兩種貨車,3輛大貨車與2輛小貨車一次可以運(yùn)貨21噸,2輛大貨車與4輛小貨車一次可以運(yùn)貨22噸.

1)每輛大貨車和每輛小貨車一次各可以運(yùn)貨多少噸?

2)現(xiàn)有這兩種貨車共10輛,要求一次運(yùn)貨不低于35噸,則其中大貨車至少多少輛?(用不等式解答)

3)日前有23噸貨物需要運(yùn)輸,欲租用這兩種貨車運(yùn)送,要求全部貨物一次運(yùn)完且每輛車必須裝滿.已知每輛大貨車一次運(yùn)貨租金為300元,每輛小貨車一次運(yùn)貨租金為200元,請列出所有的運(yùn)輸方案井求出最少租金.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里,裝有三個分別寫有數(shù)字1,2,3的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機(jī)取出一個小球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)取出一個小球,記下數(shù)字.請你用畫樹形圖或列表的方法,求下列事件的概率:

1)兩次取出小球上的數(shù)字相同的概率;

2)兩次取出小球上的數(shù)字之和大于3的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:在數(shù)軸上所對的兩點(diǎn)之間的距離:

在數(shù)軸上所對的兩點(diǎn)之間的距離:;

在數(shù)軸上所對的兩點(diǎn)之間的距離:;

在數(shù)軸上點(diǎn)、分別表示數(shù)、,則、兩點(diǎn)之間的距離

請回答下列問題:

)數(shù)軸上表示的兩點(diǎn)之間的距離是__________

數(shù)軸上表示數(shù)的兩點(diǎn)之間的距離表示為__________.?dāng)?shù)軸上表示數(shù)____________________的兩點(diǎn)之間的距離表示為

)七年級研究性學(xué)習(xí)小組在數(shù)學(xué)老師指導(dǎo)下,對式子進(jìn)行探究:

①請你在草稿紙上畫出數(shù)軸,當(dāng)表示數(shù)的點(diǎn)在之間移動時,的值總是一個固定的值為:__________.(直接寫出結(jié)果)

②請你在草稿紙上畫出數(shù)軸,要使,數(shù)軸上滿足條件的點(diǎn)表示的數(shù)字是:__________(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為正方形ABCD的中心,BE平分∠DBCDC于點(diǎn)E,延長BC到點(diǎn)F,使FC=EC,連結(jié)DFBE的延長線于點(diǎn)H,連結(jié)OHDC于點(diǎn)G,連結(jié)HC.則以下四個結(jié)論中:①OHBF,②GH=BC,③BF=2OD,④∠CHF=45°.正確結(jié)論的個數(shù)為( )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn) 經(jīng)過點(diǎn)A(﹣1,0),B(5,﹣6),C(6,0)

(1)求拋物線的解析式;

(2)如圖,在直線AB下方的拋物線上是否存在點(diǎn)P使四邊形PACB的面積最大?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(3)若點(diǎn)Q為拋物線的對稱軸上的一個動點(diǎn),試指出△QAB為等腰三角形的點(diǎn)Q一共有幾個?并請求出其中某一個點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并用相關(guān)的思想方法解決問題.

計(jì)算:(1﹣×++1×++).

++=t,則原式=(1﹣t)(t+1tt=t+t2tt+t2=

問題:

(1)計(jì)算:(1﹣×++1×++);

(2)解方程(x2+5x+1)(x2+5x+7)=7.

查看答案和解析>>

同步練習(xí)冊答案