(2005•呼和浩特)如圖1,AB是⊙O的直徑,直線l交⊙O于C1、C2,AD⊥l,垂足為D.
(1)求證:AC1•AC2=AB•AD.
(2)若將直線l向上平移(如圖2),交⊙O于C1、C2,使弦C1C2與直徑AB相交(交點(diǎn)不與A、B重合),其他條件不變,請(qǐng)你猜想,AC1、AC2、AB、AD之間的關(guān)系,并說(shuō)明理由.
(3)若將直線l平移到與⊙O相切時(shí),切點(diǎn)為C,其他條件不變,請(qǐng)你在圖3上畫出變化后的圖形,標(biāo)好相應(yīng)的字母并猜想AC、AB、AD的關(guān)系是什么?(只寫出關(guān)系,不加以說(shuō)明)
【答案】分析:(1)本題要通過構(gòu)建相似三角形來(lái)求解.連接AC1、BC2,通過證△ABC2∽△AC1D可得出所求結(jié)論.(所證的兩個(gè)三角形中,同弧對(duì)的圓周角相等以及一組直角);
(2)結(jié)論同(1)也是通過證△ABC2∽△AC1D來(lái)得出所求結(jié)論;
(3)當(dāng)直線l與圓相切時(shí),C1、C2重合,因此結(jié)論變?yōu)锳C2=AB•AD,可通過證三角形ABC和ACD相似,通過弦切角和一組直角來(lái)證得兩三角形相似.
解答:(1)證明:連接BC2
∵AB為直徑,∴∠BC2A=90度.
∵AD⊥l,即∠ADC1=90°,
∴∠BC2A=∠ADC1
又∵∠B=∠AC1D,
∴△ABC2∽△AC1D.

∴AC1•AC2=AB•AD.

(2)解:當(dāng)l向上平移后,連接BC2
∵AB為直徑,
∴∠BC2A=90度.
∵AD⊥l,即∠ADC1=90°,
∴∠BC2A=∠ADC1
又∵∠B=∠AC1D,
∴△ABC2∽△AC1D.

∴AC1•AC2=AB•AD.

(3)解:AC2=AB•AD.
畫草圖.

點(diǎn)評(píng):本題主要考查了圓周角定理和相似三角形的判定和性質(zhì).根據(jù)相似三角形來(lái)求線段成比例是解題的基本思路.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2005•呼和浩特)如圖,已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(-,b),過點(diǎn)A作AB⊥x軸,垂足為點(diǎn)B,△AOB的面積為
(1)求k和b的值;
(2)若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)M,求OA:OM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年內(nèi)蒙古呼和浩特市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•呼和浩特)如圖,已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(-,b),過點(diǎn)A作AB⊥x軸,垂足為點(diǎn)B,△AOB的面積為
(1)求k和b的值;
(2)若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)M,求OA:OM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《有理數(shù)》(02)(解析版) 題型:選擇題

(2005•呼和浩特)2006年世界杯足球賽預(yù)計(jì)現(xiàn)場(chǎng)觀看人數(shù)將達(dá)到1 820 000人,用科學(xué)記數(shù)法表示為( )
A.1.82×105
B.0.182×107
C.1.82×106
D.182×104

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:選擇題

(2005•呼和浩特)如圖,在等邊△ABC中,P為BC上一點(diǎn),D為AC上一點(diǎn),且∠APD=60°,BP=1,CD=,則△ABC的邊長(zhǎng)為( )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《概率》(04)(解析版) 題型:解答題

(2005•呼和浩特)某商場(chǎng)搞“真情回報(bào)社會(huì)”的幸運(yùn)抽獎(jiǎng)活動(dòng),最高獎(jiǎng)金為每份l萬(wàn)元,平均獎(jiǎng)金180元.下面是獎(jiǎng)金的分配表:
獎(jiǎng)金等級(jí)一等獎(jiǎng)二等獎(jiǎng)三等獎(jiǎng)四等獎(jiǎng)五等獎(jiǎng)
獎(jiǎng)金額(元)10000500010005010
中獎(jiǎng)人數(shù)3889300600
一名顧客抽到一張獎(jiǎng)券,獎(jiǎng)金數(shù)為10元,她調(diào)查了周圍不少正在兌獎(jiǎng)的其他顧客,很少有超過50元的,她氣憤地去找商場(chǎng)的領(lǐng)導(dǎo)理論,領(lǐng)導(dǎo)解釋說(shuō)這不存在什么欺騙,平均獎(jiǎng)金確實(shí)是180元,你認(rèn)為商場(chǎng)所說(shuō)的平均獎(jiǎng)金是否欺騙了顧客?此種說(shuō)法是否能夠很好地反映中獎(jiǎng)的一般金額?用你所學(xué)的統(tǒng)計(jì)與概率的有關(guān)知識(shí)做簡(jiǎn)要分析說(shuō)明.以后再遇上類似抽獎(jiǎng)活動(dòng)的問題,你會(huì)更關(guān)心什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案