【題目】問題提出
(1)如圖①,已知△ABC,請畫出△ABC關(guān)于直線AC對稱的三角形.
問題探究
(2)如圖②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點G、H,使得四邊形EFGH的周長最小?若存在,求出它周長的最小值;若不存在,請說明理由.
問題解決
(3)如圖③,有一矩形板材ABCD,AB=3米,AD=6米,現(xiàn)想從此板材中裁出一個面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,經(jīng)研究,只有當(dāng)點E、F、G分別在邊AD.AB、BC上,且AF<BF,并滿足點H在矩形ABCD內(nèi)部或邊上時,才有可能裁出符合要求的部件,試問能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積;若不能,請說明理由.
【答案】(1)作圖見解析;(2)存在,最小值為;(3)能,.
【解析】
試題分析:(1)作B關(guān)于AC 的對稱點D,連接AD,CD,△ACD即為所求;
(2)作E關(guān)于CD的對稱點E′,作F關(guān)于BC的對稱點F′,連接E′F′,得到此時四邊形EFGH的周長最小,根據(jù)軸對稱的性質(zhì)得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=即可得到結(jié)論;
(3)根據(jù)余角的性質(zhì)得到1=∠2,推出△AEF≌△BGF,根據(jù)全等三角形的性質(zhì)得到AF=BG,AE=BF,設(shè)AF=x,則AE=BF=3﹣x根據(jù)勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG關(guān)于EG的對稱△EOG,則四邊形EFGO是正方形,∠EOG=90°,以O(shè)為圓心,以EG為半徑作⊙O,則∠EHG=45°的點在⊙O上,連接FO,并延長交⊙O于H′,則H′在EG的垂直平分線上,連接EH′GH′,則∠EH′G=45°,于是得到四邊形EFGH′是符合條件的最大部件,根據(jù)矩形的面積公式即可得到結(jié)論.
試題解析:(1)如圖1,△ADC即為所求;
(2)存在,理由:作E關(guān)于CD的對稱點E′,作F關(guān)于BC的對稱點F′,連接E′F′,交BC于G,交CD于H,連接FG,EH,則F′G=FG,E′H=EH,則此時四邊形EFGH的周長最小,由題意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=,∴四邊形EFGH的周長的最小值=EF+FG+GH+HE=EF+E′F′=,∴在邊BC、CD上分別存在點G、H,使得四邊形EFGH的周長最小,最小值為;
(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,在△AEF與△BGF中,∵∠1=∠2,∠A=∠B,EF=FG,∴△AEF≌△BGF,∴AF=BG,AE=BF,設(shè)AF=x,則AE=BF=3﹣x,∴,解得:x=1,x=2(不合題意,舍去),∴AF=BG=1,BF=AE=2,∴DE=4,CG=5,連接EG,作△EFG關(guān)于EG的對稱△EOG,則四邊形EFGO是正方形,∠EOG=90°,以O(shè)為圓心,以EG為半徑作⊙O,則∠EHG=45°的點在⊙O上,連接FO,并延長交⊙O于H′,則H′在EG的垂直平分線上,連接EH′GH′,則∠EH′G=45°,此時,四邊形EFGH′是要想裁得符合要求的面積最大的,∴C在線段EG的垂直平分線設(shè),∴點F,O,H′,C在一條直線上,∵EG=,∴OF=EG=,∵CF=,∴OC=,∵OH′=OE=FG=,∴OH′<OC,∴點H′在矩形ABCD的內(nèi)部,∴可以在矩形ABCD中,裁得符合條件的面積最大的四邊形EFGH′部件,這個部件的面積=EGFH′==,∴當(dāng)所裁得的四邊形部件為四邊形EFGH′時,裁得了符合條件的最大部件,這個部件的面積為()m2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,必然發(fā)生的是( 。
A. 某射擊運(yùn)動射擊一次,命中靶心
B. 擲一次骰子,向上的一面是6點
C. 通常情況下,水加熱到100℃時沸騰
D. 拋一枚硬幣,落地后正面朝上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索規(guī)律:
觀察由※組成的圖案和算式,解答問題:
1+3=4=
1+3+5=9=
1+3+5+7=16=
1+3+5+7+9=25=
(1)請猜想1+3+5+7+9+ … +29= ;(3分)
(2)請猜想1+3+5+7+9+ … +(2n-1)+(2n+1)= ;(3分)
(3)請用上述規(guī)律計算:(6分)41+43+45+ …… +77+79
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請同學(xué)思考如下問題:如圖1,我們把一個四邊形ABCD的四邊中點E,F,G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?
小敏在思考問題是,有如下思路:連接AC.
結(jié)合小敏的思路作答
(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由;參考小敏思考問題方法解決一下問題:
(2)如圖2,在(1)的條件下,若連接AC,BD.
①當(dāng)AC與BD滿足什么條件時,四邊形EFGH是菱形,寫出結(jié)論并證明;
②當(dāng)AC與BD滿足什么條件時,四邊形EFGH是矩形,直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 有理數(shù)分為正數(shù)和負(fù)數(shù) B. 符號不同的兩個數(shù)互為相反數(shù)
C. 所有的有理數(shù)都能用數(shù)軸上的點表示 D. 兩數(shù)相加,和一定大于任何一個數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y與x-3成正比例,當(dāng)x=4時,y=3.
(1) 求出y與x之間的函數(shù)關(guān)系式;
(2) y與x之間是什么函數(shù)關(guān)系? 并在平面直角坐標(biāo)系中畫出該函數(shù)的圖像;
(3) 當(dāng)x=2.5時,y的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)a在數(shù)軸上表示的點在原點左側(cè),距離原點3個單位長,b在數(shù)軸上表示的點在原點右側(cè),距離原點2個單位長,c和d互為倒數(shù),m與n互為相反數(shù),y為最大的負(fù)整數(shù),求(y+b)2+m(a-cd)-nb2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com