如圖,AB是⊙O的直徑,弦BC=2cm,∠ABC=60º.
(1)求⊙O的直徑;
(2)若D是AB延長線上一點,連結(jié)CD,當BD長為多少時,CD與⊙O相切;
(3)若動點E以2cm/s的速度從A點出發(fā)沿著AB方向運動,同時動點F以1cm/s的速度從B點出發(fā)沿BC方向運動,設運動時間為,連結(jié)EF,當為何值時,△BEF為直角三角形.
解:(1)∵AB是⊙O的直徑∴∠ACB=90º-----1分
∵∠ABC=60º∴∠BAC= 30º----2分
∴AB=2BC=4cm,即⊙O的直徑為4cm.---3分
(2)如圖(1)CD切⊙O于點C,連結(jié)OC,
則OC=OB=1/2·AB=2cm----4分.
∴CD⊥CO∴∠OCD=90º∵∠BAC= 30º∴∠COD=2∠BAC= 60º
∴∠D=30º∴OD=2OC=4cm∴BD=OD-OB=4-2=2—5分
∴當BD長為2cm,CD與⊙O相切.----6分
(3)根據(jù)題意得:BE=(4-2t)cm,BF=tcm;
如圖(2)當EF⊥BC時,△BEF為直角三角形,
此時△BEF∽△BAC---7分∴BE:BA=BF:BC
即:(4-2t):4=t:2 ---8分 解得:t=1---9分
如圖10(3)當EF⊥BA時,△BEF為直角三角形,此時△BEF∽△BCA
∴BE:BC=BF:BA----10分
即:(4-2t):2=t:4
解得:t=1.6---11分
∴當t=1s或t=1.6s時,△BEF為直角三角形.---12分
解析
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047
已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com