拋物線交軸于A、B兩點(diǎn),交軸于點(diǎn),對稱軸為直線,且A、C兩點(diǎn)的坐標(biāo)分別為、.
(1)求拋物線和直線BC:的解析式;(6分)
(2)當(dāng)時(shí),直接寫出x的取值范圍.(2分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,已知拋物線交軸于兩點(diǎn),交軸于點(diǎn).
(1)求此拋物線的解析式;
(2)若此拋物線的對稱軸與直線交于點(diǎn)D,作⊙D與x軸相切,⊙D交軸于點(diǎn)E、F兩點(diǎn),求劣弧EF的長;
(3)P為此拋物線在第二象限圖像上的一點(diǎn),PG垂直于軸,垂足為點(diǎn)G,試確定P點(diǎn)的位置,使得△PGA的面積被直線AC分為1︰2兩部分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖12,已知拋物線交軸于A、B兩點(diǎn),交軸于點(diǎn)C,拋物線的對稱軸交軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為(,0).
(1)求拋物線的對稱軸及點(diǎn)A的坐標(biāo);
(2)在平面直角坐標(biāo)系中是否存在點(diǎn)P,與A、B、C三點(diǎn)構(gòu)成一個(gè)平行四邊形?若存在,請寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)連結(jié)CA與拋物線的對稱軸交于點(diǎn)D,在拋物線上是否存在點(diǎn)M,使得直線CM把四邊形DEOC分成面積相等的兩部分?若存在,請求出直線CM的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知拋物線交軸于A、B兩點(diǎn),交軸于點(diǎn)C,拋物線的對稱軸交軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為(,0).
(1)求拋物線的對稱軸及點(diǎn)A的坐標(biāo);
(2)在平面直角坐標(biāo)系中是否存在點(diǎn)P,與A、B、C三點(diǎn)構(gòu)成一個(gè)平行四邊形?若存在,請寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)連結(jié)CA與拋物線的對稱軸交于點(diǎn)D,在拋物線上是否存在點(diǎn)M,使得直線CM把四邊形DEOC分成面積相等的兩部分?若存在,請求出直線CM的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇阜寧第一學(xué)期期末學(xué)情調(diào)研九年級(jí)數(shù)學(xué)試卷 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知拋物線交軸于兩點(diǎn),交軸于點(diǎn).
(1)求此拋物線的解析式;
(2)若此拋物線的對稱軸與直線交于點(diǎn)D,作⊙D與x軸相切,⊙D交軸于點(diǎn)E、F兩點(diǎn),求劣弧 的長;
(3)P為此拋物線在第二象限圖像上的一點(diǎn),PG垂直于軸,垂足為點(diǎn)G,試確定P點(diǎn)的位置,使得△PGA的面積被直線AC分為1︰2兩部分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年高級(jí)中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(四川內(nèi)江) 題型:解答題
(本題滿分12分)
如圖,在平面直角坐標(biāo)系中,已知拋物線交軸于兩點(diǎn),交軸于點(diǎn).
(1)求此拋物線的解析式;
(2)若此拋物線的對稱軸與直線交于點(diǎn)D,作⊙D與x軸相切,⊙D交軸于點(diǎn)E、F兩點(diǎn),求劣弧EF的長;
(3)P為此拋物線在第二象限圖像上的一點(diǎn),PG垂直于軸,垂足為點(diǎn)G,試確定P點(diǎn)的位置,使得△PGA的面積被直線AC分為1︰2兩部分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com