【題目】為了解某中學(xué)學(xué)生課余生活情況,對(duì)喜愛看課外書、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì).現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng)).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.由圖中提供的信息,解答下列問題:
(1)求n的值;
(2)若該校學(xué)生共有1200人,試估計(jì)該校喜愛看電視的學(xué)生人數(shù);
(3)若調(diào)查到喜愛體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.
【答案】(1)50;(2)240;(3).
【解析】
用喜愛社會(huì)實(shí)踐的人數(shù)除以它所占的百分比得到n的值;
先計(jì)算出樣本中喜愛看電視的人數(shù),然后用1200乘以樣本中喜愛看電視人數(shù)所占的百分比,即可估計(jì)該校喜愛看電視的學(xué)生人數(shù);
畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出恰好抽到2名男生的結(jié)果數(shù),然后根據(jù)概率公式求解.
解:(1);
(2)樣本中喜愛看電視的人數(shù)為(人,
,
所以估計(jì)該校喜愛看電視的學(xué)生人數(shù)為240人;
(3)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中恰好抽到2名男生的結(jié)果數(shù)為6,
所以恰好抽到2名男生的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC與DE相交于點(diǎn)F,連接CD,EB.
(1)圖中還有幾對(duì)全等三角形,請(qǐng)你一一列舉;
(2)求證:CF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD的一組對(duì)邊AD、BC的延長線交于點(diǎn)E.
(1)如圖①,若∠ABC=∠ADC=90°,求證:ED·EA=EC·EB;
(2)如圖②,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面積為6,求四邊形ABCD的面積;
(3)如圖③,另一組對(duì)邊AB、DC的延長線相交于點(diǎn)F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接寫出AD的長(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與),軸交于點(diǎn)C.拋物線的對(duì)稱軸是直線x=﹣2,D是拋物線的頂點(diǎn).
(1)求二次函數(shù)的表達(dá)式;
(2)當(dāng)﹣<x<1時(shí),請(qǐng)求出y的取值范圍;
(3)連接AD,線段OC上有一點(diǎn)E,點(diǎn)E關(guān)于直線x=﹣2的對(duì)稱點(diǎn)E'恰好在線段AD上,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:Rt△ABC中,∠C=90°,AC=BC=2,將一塊三角尺的直角頂點(diǎn)與斜邊AB的中點(diǎn)M重合,當(dāng)三角尺繞著點(diǎn)M旋轉(zhuǎn)時(shí),兩直角邊始終保持分別與邊BC、AC交于D,E兩點(diǎn)(D、E不與B、A重合).
(1)求證:MD=ME;
(2)求四邊形MDCE的面積:
(3)若只將原題目中的“AC=BC=2”改為“BC=a,AC=b,(a≠b)”其它都不變,請(qǐng)你探究:MD和ME還相等嗎?如果相等,請(qǐng)證明;如果不相等,請(qǐng)求出MD∶ME的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)如圖,直線y=x+m和拋物線y=+bx+c都經(jīng)過點(diǎn)A(1,0),
B(3,2).
(1)求m的值和拋物線的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀題例,解答下題:
例解方程
解:
當(dāng),即時(shí)
當(dāng),即時(shí)
解得:不合題設(shè),舍去,
解得不合題設(shè),舍去
綜上所述,原方程的解是或
依照上例解法,解方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=5,BC=8,點(diǎn)E為AD上一個(gè)動(dòng)點(diǎn),把△ABE沿BE折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)F,連接DF,連接CF.當(dāng)點(diǎn)F落在矩形內(nèi)部,且CF=CD時(shí),AE的長為( ).
A. 3B. 2.5C. 2D. 1.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com