【題目】如圖1,拋物線y=x2+bx+c與x軸交于A(2,0),B(4,0)兩點(diǎn).

(1)求該拋物線的解析式;

(2)若拋物線交y軸于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得QAC的周長(zhǎng)最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

(3)在拋物線的第二象限圖象上是否存在一點(diǎn)P,使得PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及PBC的面積最大值;若不存,請(qǐng)說明理由.

【答案】(1)、y=x22x+8;(2)、Q(1,6);(3)、(2,8)

【解析】

試題分析:(1)、直接利用待定系數(shù)求出二次函數(shù)解析式即可;(2)、首先求出直線BC的解析式,再利用軸對(duì)稱求最短路線的方法得出答案;(3)、根據(jù)SBPC=S四邊形BPCOSBOC=S四邊形BPCO16,得出函數(shù)最值,進(jìn)而求出P點(diǎn)坐標(biāo)即可.

試題解析:(1)、將A(2,0),B(4,0)代入得:, 解得:

則該拋物線的解析式為:y=x22x+8;

(2)、如圖1,點(diǎn)A關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)B,設(shè)直線BC的解析式為: y=kx+d, 將點(diǎn)B(4,0)、C(0,8)代入得:, 解得:,

故直線BC解析式為:y=2x+8, 直線BC與拋物線對(duì)稱軸 x=1的交點(diǎn)為Q,此時(shí)QAC的周長(zhǎng)最。

解方程組得: 則點(diǎn)Q(1,6)即為所求;

(3)、如圖2,過點(diǎn)P作PEx軸于點(diǎn)E,

P點(diǎn)(x,x22x+8)(4<x<0) SBPC=S四邊形BPCOSBOC=S四邊形BPCO16

若S四邊形BPCO有最大值,則SBPC就最大

S四邊形BPCO=SBPE+S直角梯形PEOC=BEPE+OE(PE+OC)=(x+4)(x22x+8)+(x)(x22x+8+8)

=2(x+2)2+24,

當(dāng)x=2時(shí),S四邊形BPCO最大值=24, SBPC最大=2416=8, 當(dāng)x=2時(shí),x22x+8=8,

點(diǎn)P的坐標(biāo)為(2,8).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小剛進(jìn)行賽跑訓(xùn)練,他們選擇了一個(gè)土坡,按同一路線同時(shí)出發(fā),從坡腳跑到坡頂再原路返回坡腳.他們倆上坡的平均速度不同,下坡的平均速度則是各自上坡平均速度的1. 5倍.設(shè)兩人出發(fā)x min后距出發(fā)點(diǎn)的距離為y m.圖中折線段OBA表示小明在整個(gè)訓(xùn)練中y與x的函數(shù)關(guān)系,其中點(diǎn)A在x軸上,點(diǎn)B坐標(biāo)為(2,480).

(1)點(diǎn)B所表示的實(shí)際意義是 ;

(2)求出AB所在直線的函數(shù)關(guān)系式;

(3)如果小剛上坡平均速度是小明上坡平均速度的一半,那么兩人出發(fā)后多長(zhǎng)時(shí)間第一次相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某初一年級(jí)有500名同學(xué),將他們的身高(單位:cm)數(shù)據(jù)繪制成頻率分布直方圖(如圖),若要從身高在 , 三組內(nèi)的學(xué)生中,用分層抽樣的方法選取30人參加一項(xiàng)活動(dòng),則從身高在 內(nèi)的學(xué)生中選取的人數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,AE⊥BC于點(diǎn)E,AF⊥CD交DC的延長(zhǎng)線于點(diǎn)F,AE=4 cm,AF=5 cm,四邊形ABCD的周長(zhǎng)為36 cm.求AB,BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】政府為了更好地加強(qiáng)城市建設(shè),就社會(huì)熱點(diǎn)問題廣泛征求市民意見,調(diào)查方式是發(fā)調(diào)查表,要求每位被調(diào)查人員只寫一個(gè)你最關(guān)心的有關(guān)城市建設(shè)的問題,經(jīng)統(tǒng)計(jì)整理,發(fā)現(xiàn)對(duì)環(huán)境保護(hù)問題提出的最多,有700人,同時(shí)作出相應(yīng)的條形統(tǒng)計(jì)圖,如圖所示,請(qǐng)回答下列問題.

(1)共收回調(diào)查表張;
(2)提道路交通問題的有人;
(3)請(qǐng)你把這個(gè)條形統(tǒng)計(jì)圖用扇形統(tǒng)計(jì)圖表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=k1x+b1與反比例函數(shù)y=的圖象及坐標(biāo)軸依次相交于A、B、C、D四點(diǎn),且點(diǎn)A坐標(biāo)為(﹣3,),點(diǎn)B坐標(biāo)為(1,n).

(1)求反比例函數(shù)及一次函數(shù)的解析式;

(2)求證:AC=BD;

(3)若將一次函數(shù)的圖象上下平移若干個(gè)單位后得到y(tǒng)=k1x+n,其與反比例函數(shù)圖象及兩坐標(biāo)軸的交點(diǎn)仍然依次為A、B、C、D.(2)中的結(jié)論還成立嗎?請(qǐng)寫出理由,對(duì)于任意k0的直線y=kx+b.(2)中的結(jié)論還成立嗎?(請(qǐng)直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某三角形的第一條邊長(zhǎng)(2a﹣b)厘米,第二條邊比第一條邊長(zhǎng)(a+b)厘米,第三條邊是第一條邊的2倍少b厘米,那么這個(gè)三角形的周長(zhǎng)是厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)數(shù)和它的倒數(shù)相等,則這個(gè)數(shù)是(
A.1
B.﹣1
C.±1
D.±1和0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若直線y=kx+b經(jīng)過第一、二、四象限,則k,b的取值范圍是(

A. k>0, b>0 B. k>0,b<0 C. k<0,b>0 D. k<0,b<0

查看答案和解析>>

同步練習(xí)冊(cè)答案