已知a、b、c是三個(gè)不全為0的實(shí)數(shù),那么關(guān)于x的方程x2+(a+b+c)x+a2+b2+c2=0的根的情況是


  1. A.
    有兩個(gè)負(fù)根
  2. B.
    有兩個(gè)正根
  3. C.
    兩根一正一負(fù)
  4. D.
    無實(shí)數(shù)根
D
分析:先計(jì)算出△=(a+b+c)2-4(a2+b2+c2)=-3a2-3b2-3c2+2ab+2bc+2ac,然后進(jìn)行配方得到△=-(a-c)2-(b-c)2-(a-b)2-a2-b2-c2,再根據(jù)a、b、c是三個(gè)不全為0的實(shí)數(shù),即可判斷△<0,從而得到方程根的情況.
解答:∵△=(a+b+c)2-4(a2+b2+c2
=-3a2-3b2-3c2+2ab+2bc+2ac
=-(a-c)2-(b-c)2-(a-b)2-a2-b2-c2
而a、b、c是三個(gè)不全為0的實(shí)數(shù),
∴(a-c)2-(b-c)2-(a-b)2-≤0,a2-b2-c2,<0,
∴△<0,
∴原方程無實(shí)數(shù)根.
故選D.
點(diǎn)評:本題考查了一元二次方程ax2+bx+c=0(a,b,c為常數(shù),a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,原方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,原方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,原方程沒有實(shí)數(shù)根;也考查了代數(shù)式的變形能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC、△DCE、△FEG是三個(gè)全等的等腰三角形,底邊BC、CE、EG在同一直線上,且AB=
3
,BC=1.連接BF,分別交AC、DC、DE于點(diǎn)P、Q、R.
(1)求證:△BFG∽△FEG;
(2)求出BF的長;
(3)求
BP
QR
=
 
(直接寫出結(jié)果).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知x、y、z是三個(gè)非負(fù)整數(shù),滿足3x+2y+z=5,x+y-z=2,若s=2x+y-z,則s的最大值與最小值的和為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、已知a、b、c是三個(gè)不全為0的實(shí)數(shù),那么關(guān)于x的方程x2+(a+b+c)x+a2+b2+c2=0的根的情況是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知a、b、c是三個(gè)任意整數(shù),在這三個(gè)數(shù)中,整數(shù)的個(gè)數(shù)至少有( 。﹤(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、已知Rt△ABC的三邊長是三個(gè)連續(xù)整數(shù),則這個(gè)三角形的斜邊長為
5

查看答案和解析>>

同步練習(xí)冊答案