【題目】如圖,直線AB、CD相交于點(diǎn)O,∠AOD=120°,FO⊥OD,OE平分∠BOD.
(1)求∠EOF的度數(shù);
(2)試說明OB平分∠EOF.
【答案】(1)60°;(2)證明見解析.
【解析】
(1)利用鄰補(bǔ)角的性質(zhì)求出∠BOD,再利用角平分線的性質(zhì)求出∠EOD,由垂直的定義即可得到結(jié)論;
(2)由垂直和∠BOD的度數(shù)可求出∠FOB,然后與∠BOE比較即可得出結(jié)論.
(1)∵AB為一直線,∠AOD=120°,∴∠BOD=60°.
∵OE平分∠BOD,∴∠EOD=∠EOB =∠DOB= 30°.
∵OF⊥OD,∴∠FOD=90°,∴∠EOF=∠FOD ∠EOD=90°30°=60°.
(2)∵∠FOD=90°,∠BOD=60°,∴∠FOB=∠FOD∠BOD=90°60°=30°.
∵∠BOE=30°,∴∠BOF=∠BOE,∴OB平分∠EOF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)幾何體及它的表面展開圖如圖所示.(幾何體的上、下底面均為梯形)
(1)寫出這個(gè)幾何體的名稱;
(2)計(jì)算這個(gè)幾何體的側(cè)面積和左視圖的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知多項(xiàng)式2x2+x3+x﹣5x4﹣.
(1)請(qǐng)指出該多項(xiàng)式是幾次幾項(xiàng)式,并寫出它的二次項(xiàng)、一次項(xiàng)和常數(shù)項(xiàng);
(2)按要求把這個(gè)多項(xiàng)式重新排列:①按x的降冪排列;②按x的升冪排列.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三角形ABC中,BC=14,AC=9,AB=13,它的內(nèi)切圓分別和BC、AC、AB切于點(diǎn)D、E、F,那么AF、BD、CE的長分別為( )
A.AF=4,BD=9,CE=5
B.AF=4,BD=5,CE=9
C.AF=5,BD=4,CE=9
D.AF=9,BD=4,CE=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P,Q分別是∠AOB的邊OA,OB上的點(diǎn).
(1)過點(diǎn)P畫OB的垂線,垂足為H;
(2)過點(diǎn)Q畫OA的垂線,交OA于點(diǎn)C,連接PQ;
(3)線段QC的長度是點(diǎn)Q到 的距離, 的長度是點(diǎn)P到直線OB的距離,因?yàn)橹本外一點(diǎn)和直線上各點(diǎn)連接的所有線段中,垂線段最短,所以線段PQ、PH的大小關(guān)系是 (用“<”號(hào)連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與AB、BC、CA分別相切于點(diǎn)D、E、F,且∠ACB=90°,AB=5,BC=3,點(diǎn)P是邊AC上的一動(dòng)點(diǎn),PH⊥AB,垂足為H.
(1)求⊙O的半徑的長及線段AD的長;
(2)設(shè)PH=x,PC=y,求y關(guān)于x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,CA=CB,AD是腰BC邊上的高,△ACD的內(nèi)切圓⊙E分別與邊AD、BC相切于點(diǎn)F、G,連AE、BE.
(1)求證:AF=BG;
(2)過E點(diǎn)作EH⊥AB于H,試探索線段EH與線段AB的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,點(diǎn)A表示-5,點(diǎn)B表示10.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿?cái)?shù)軸正方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿?cái)?shù)軸負(fù)方向以每秒2個(gè)單位的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t為 秒時(shí),P,Q兩點(diǎn)相遇,求出相遇點(diǎn)所對(duì)應(yīng)的數(shù);
(2)當(dāng)t為何值時(shí),P,Q兩點(diǎn)的距離為3個(gè)單位長度,并求出此時(shí)點(diǎn)P對(duì)應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩點(diǎn)在數(shù)軸上的位置如圖所示,O為原點(diǎn),現(xiàn)A,B兩點(diǎn)分別以1個(gè)單位長度/秒的速度同時(shí)向左運(yùn)動(dòng)。
(1)幾秒后,原點(diǎn)恰好在A,B兩點(diǎn)正中間?
(2)幾秒后,恰好有OA:OB=1:2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com