【題目】一個幾何體及它的表面展開圖如圖所示.(幾何體的上、下底面均為梯形)
(1)寫出這個幾何體的名稱;
(2)計算這個幾何體的側(cè)面積和左視圖的面積.

【答案】解:(1)觀察圖形可知,這個幾何體是四棱柱;
(2)側(cè)面積:13×(5+12+5+6)=13×28=364;
左視圖的寬:(12﹣6)÷2=3,=4,
左視圖的面積:13×4=52.

【解析】(1)根據(jù)幾何體的三視圖,可得出幾何體是四棱柱;
(2)由圖可得側(cè)面積等于四個矩形的面積;左視圖是一個長方形,根據(jù)勾股定理可得長方形的寬,再根據(jù)長方形的面積公式即可求解.
【考點精析】掌握由三視圖判斷幾何體是解答本題的根本,需要知道在三視圖中,通過主視圖、俯視圖可以確定組合圖形的列數(shù);通過俯視圖、左視圖可以確定組合圖形的行數(shù);通過主視圖、左視圖可以確定行與列中的最高層數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在開展 校園獻愛心活動中準備向南部山區(qū)學(xué)校捐贈男、女兩種款式的書包已知男款書包的單價50元/個,女款書包的單價70元/個

1原計劃募捐3400元,購買兩種款式的書包共60個,那么這兩種款式的書包各買多少個?

2在捐款活動中,由于學(xué)生捐款的積極性高漲,實際共捐款4800元,如果至少購買兩種款式的書包共80個那么女款書包最多能買多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大于1的正整數(shù)m的三次冪可“分裂”成若干個連續(xù)奇數(shù)的和.如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3“分裂”后,其中有一個奇數(shù)是347,則m的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一組有規(guī)律的圖案,它們是由邊長相同的正方形和正三角形拼接而成,第①個圖案有4個三角形和1個正方形,第②個圖案有7個三角形和2個正方形,第③個圖案有10個三角形和3個正方形,…依此規(guī)律,第n個圖案有 ____________個三角形(用含n的代數(shù)式表示);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張師傅根據(jù)某幾何體零件,按1:1的比例畫出準確的三視圖(都是長方形)如圖,已知EF=4cm,F(xiàn)G=12cm,AD=10cm.
(1)說出這個幾何體的名稱;
(2)求這個幾何體的表面積S;
(3)求這個幾何體的體積V.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD和正方形BEFG平放在一起.

(1)若兩正方形的面積分別是169,直接寫出邊AE的長為

(2)①設(shè)正方形ABCD的邊長為a,正方形BEFG的邊長為b,求圖中陰影部分的面積(用含ab的代數(shù)式表示)

的條件下,如果a+b=10,ab=16,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鈍角三角形ABC中,∠BAC>90°,AB=AC,ACB=α,過點A的直線lBC邊于點D.點E在直線l上,且BC=BE.,點EAD延長線上.

①當(dāng)α=30°,點D恰好為BC中點時,補全圖1直接寫出∠BAE= °,

BEA= °;

②如圖2,若∠BAE=2α,求∠BEA的度數(shù)(用含α的代數(shù)式表示);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個長方形運動場被分隔成、、個區(qū), 區(qū)是邊長為的正方形, 區(qū)是邊長為的正方形.

(1)列式表示每個區(qū)長方形場地的周長,并將式子化簡;

(2)列式表示整個長方形運動場的周長,并將式子化簡;

(3)如果, ,求整個長方形運動場的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點OAOD=120°,FOOD,OE平分∠BOD

(1)求∠EOF的度數(shù);

(2)試說明OB平分∠EOF

查看答案和解析>>

同步練習(xí)冊答案