【題目】如圖,已知∠MON90°A是∠MON內(nèi)部的一點(diǎn),過點(diǎn)AABON,垂足為點(diǎn)BAB3厘米,OB4厘米,動(dòng)點(diǎn)E、F同時(shí)從O點(diǎn)出發(fā),點(diǎn)E1.5厘米/秒的速度沿ON方向運(yùn)動(dòng),點(diǎn)F2厘米/秒的速度沿OM方向運(yùn)動(dòng),EFOA交于點(diǎn)C,連接AE,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時(shí),點(diǎn)F隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t0.

1)當(dāng)t1秒時(shí),EOFABO是否相似?請(qǐng)說明理由;

2)在運(yùn)動(dòng)過程中,不論t取何值,總有EFOA,為什么?

3)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使得AEBOEF相似?

【答案】1)△EOF∽△ABO.理由見解析;(2)見解析;(3)當(dāng)t時(shí),存在OEF∽△BEA

【解析】

1)運(yùn)用兩邊對(duì)應(yīng)成比例且夾角相等,即可得出EOF∽△ABO;

2)證明RtEOFRtABO,得出對(duì)應(yīng)角相等,即可得到∠FCO90°,進(jìn)而可得EFOA;

3)分兩種情況討論:OEF∽△BEAOEF∽△BAE,分別依據(jù)對(duì)應(yīng)邊成比例,求得t的值,再根據(jù)題意判斷是否符合題意即可.

1EOF∽△ABO;

理由:∵t1

OE1.5厘米,OF2厘米,

AB3厘米,OB4厘米,

,,

,

∵∠EOF=∠ABE90°,

∴△EOF∽△ABO;

2)在運(yùn)動(dòng)過程中,OE1.5tOF2t

AB3,OB4

,,

又∵∠EOF=∠ABO90°,

RtEOFRtABO

∴∠AOB=∠EFO

∵∠AOB+FOC90°,

∴∠EFO+FOC90°,即∠FCO90°,

EFOA;

3)由題可得∠EOF=∠ABE90°

OEF∽△BEA,則

,

解得t(符合題意);

OEF∽△BAE,則,

,

解得t0(不合題意),

綜上所述,當(dāng)t時(shí),存在OEF∽△BEA

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華是數(shù)學(xué)興趣小組的一名成員,他在學(xué)過二次函數(shù)的圖像與性質(zhì)之后,對(duì)的圖像與性質(zhì)進(jìn)行了探究,探究過程如下,請(qǐng)你補(bǔ)充完整.

1)小剛通過計(jì)算得到幾組對(duì)應(yīng)的數(shù)值如下

0

1

2

3

4

5

0

4

6

6

4

6

6

4

0

填空:自變量的取值范圍是__________________,__________.

2)在如圖所示的平面直角坐標(biāo)系中,描出上表中各組對(duì)應(yīng)數(shù)值的點(diǎn),并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖像.

3)請(qǐng)你根據(jù)畫出的圖像,寫出此函數(shù)的兩條性質(zhì);

__________________________________________

__________________________________________.

4)直線經(jīng)過,若關(guān)于的方程4個(gè)不相等的實(shí)數(shù)根,則的取值范圍為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】表中所列 的7對(duì)值是二次函數(shù) 圖象上的點(diǎn)所對(duì)應(yīng)的坐標(biāo),其中

x

y

7

m

14

k

14

m

7

根據(jù)表中提供的信息,有以下4 個(gè)判斷:

;② ;③ 當(dāng)時(shí),y 的值是 k;④ 其中判斷正確的是 ( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A、B、C,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:

1)請(qǐng)?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,D點(diǎn)坐標(biāo)為   

2)連接AD、CD,則⊙D的半徑為   ;扇形DAC的圓心角度數(shù)為   ;

3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開圖,求該圓錐的底面半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,ABAC3,∠BAC100°,DBC的中點(diǎn).

小明對(duì)圖①進(jìn)行了如下探究:在線段AD上任取一點(diǎn)P,連接PB.將線段PB繞點(diǎn)P按逆時(shí)針方向旋轉(zhuǎn)80°,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)E,連接BE,得到△BPE.小明發(fā)現(xiàn),隨著點(diǎn)P在線段AD上位置的變化,點(diǎn)E的位置也在變化,點(diǎn)E可能在直線AD的左側(cè),也可能在直線AD上,還可能在直線AD的右側(cè).

請(qǐng)你幫助小明繼續(xù)探究,并解答下列問題:

1)當(dāng)點(diǎn)E在直線AD上時(shí),如圖②所示.

①∠BEP   °;

②連接CE,直線CE與直線AB的位置關(guān)系是   

2)請(qǐng)?jiān)趫D③中畫出△BPE,使點(diǎn)E在直線AD的右側(cè),連接CE.試判斷直線CE與直線AB的位置關(guān)系,并說明理由.

3)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),求AE的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)EAB上一點(diǎn),AE=2,點(diǎn)FAD上,將AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上時(shí),折痕EF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)EAB上一點(diǎn),AE=2,點(diǎn)FAD上,將AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上時(shí),折痕EF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象經(jīng)過點(diǎn)(﹣1,4),且與直線相交于A、B兩點(diǎn)(如圖),A點(diǎn)在y軸上,過點(diǎn)BBC⊥x軸,垂足為點(diǎn)C(﹣3,0).

1)求二次函數(shù)的表達(dá)式;

2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)NAB上方),過NNP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;

3)在(2)的條件下,點(diǎn)N在何位置時(shí),BMNC相互垂直平分?并求出所有滿足條件的N點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線ACBD相交于點(diǎn)O,在DC的延長(zhǎng)線上取一點(diǎn)E,連接OEBC于點(diǎn)F.已知AB=4,BC=6,CE=2,則CF的長(zhǎng)等于(

A. 1 B. 1.5 C. 2 D. 3

查看答案和解析>>

同步練習(xí)冊(cè)答案