【題目】小華是數(shù)學興趣小組的一名成員,他在學過二次函數(shù)的圖像與性質之后,對的圖像與性質進行了探究,探究過程如下,請你補充完整.
(1)小剛通過計算得到幾組對應的數(shù)值如下
… | 0 | 1 | 2 | 3 | 4 | 5 | … | ||||||||
… | 0 | 4 | 6 | 6 | 4 | 6 | 6 | 4 | 0 | … |
填空:自變量的取值范圍是__________________,__________.
(2)在如圖所示的平面直角坐標系中,描出上表中各組對應數(shù)值的點,并根據(jù)描出的點,畫出該函數(shù)的圖像.
(3)請你根據(jù)畫出的圖像,寫出此函數(shù)的兩條性質;
①__________________________________________;
②__________________________________________.
(4)直線經過,若關于的方程有4個不相等的實數(shù)根,則的取值范圍為_________.
【答案】(1)全體實數(shù),-6;(2)見解析;(3)①該函數(shù)的圖象關于軸對稱;②函數(shù)的圖象有最高點;(4)
【解析】
(1)因為此函數(shù)表達式為整式,所以自變量取值范圍為全體實數(shù),由表格可觀察出函數(shù)關于y軸對稱,x=-5時,y=-6,所以x=5時,y=-6,進而得出a的值;
(2)描出表中各組對應數(shù)值的點,再用平滑的曲線連接即可;
(3)觀察可得出①該函數(shù)的圖象關于軸對稱,②函數(shù)的圖象有最高點(答案不唯一);
(4)方程的根的個數(shù)在圖像上表現(xiàn)為函數(shù)與的交點個數(shù),作出符合四個交點的情況,即可得出b的取值范圍.
(1)因為此函數(shù)表達式為整式,所以自變量取值范圍為全體實數(shù);
由表格可觀察出函數(shù)關于y軸對稱,x=-5時,y=-6,所以x=5時,y=-6,即a=-6;
故答案為:全體實數(shù),-6;
(2)如圖所示
(3)①該函數(shù)的圖象關于軸對稱
②函數(shù)的圖象有最高點(答案不唯一)
(4)當x<0時,函數(shù),
∴左側最高點為,
∵函數(shù)關于y軸對稱,
∴右側最高點為
∴當直線經過兩個最高點,如下圖所示,直線與該函數(shù)有兩個不同的交點,
此時,k=0,b=
當直線經過(0,4)時,b=4,此時直線與該函數(shù)有3個交點,如下圖所示,
由上述兩種情況可知,當b在4到之間時,直線與該函數(shù)圖象會有4個交點,即關于的方程有4個不相等的實數(shù)根,
∴b的取值范圍為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在某場足球比賽中,球員甲從球門底部中心點的正前方處起腳射門,足球沿拋物線飛向球門中心線;當足球飛離地面高度為時達到最高點,此時足球飛行的水平距離為.已知球門的橫梁高為.
在如圖所示的平面直角坐標系中,問此飛行足球能否進球門?(不計其它情況)
守門員乙站在距離球門處,他跳起時手的最大摸高為,他能阻止球員甲的此次射門嗎?如果不能,他至少后退多遠才能阻止球員甲的射門?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人進行羽毛球比賽,把球看成點,其飛行的路線為拋物線的一部分.如圖建立平面直角坐標系,甲在O點正上方1m的P處發(fā)球,羽毛球飛行的高度y(m)與羽毛球距離甲站立位置(點O)的水平距離x(m)之間滿足函敗表達式y=a(x﹣4)2+h.已知點O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m,球場邊界距點O的水平距離為10m.
(1)當a=﹣時,求h的值,并通過計算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,乙在另一側距球網(wǎng)水平距離lm處起跳扣球沒有成功,球在距球網(wǎng)水平距離lm,離地面高度2.2m處飛過,通過計算判斷此球會不會出界?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,平行四邊形BOMN的一邊延長線交x軸于點D,OB=18,OD=12,點C為線段BO上一點,以C點為圓心,CO為半徑的圓過M、N兩點,且與y軸交于點A,則OA長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠D=60°,點M在線段AD上,DM= ,AM=2,點E從點D出發(fā),沿著D-C-B-A勻速運動,速度為每秒2個單位長度,達到A點后停止運動,設△MDE的面積為y,點E運動的時間為t(s),y與t的部分函數(shù)關系如圖②所示.
(1)如圖①中,DC=_____,如圖②中,m=_______,n=_____.
(2)在E點運動過程中,將平行四邊形沿ME所在直線折疊,則t為何值時,折疊后頂點D的對應點D′落在平行四邊形的一邊上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場在“五一”促銷活動中規(guī)定,顧客每消費100元就能獲得一次中獎機會.為了活躍氣氛.設計了兩個抽獎方案:
方案一:轉動轉盤一次,轉出紅色可領取一份獎品;
方案二:轉動轉盤兩次,兩次都轉出紅色可領取一份獎品.(兩個轉盤都被平均分成3份)
(1)若轉動一次轉盤,求領取一份獎品的概率;
(2)如果你獲得一次抽獎機會,你會選擇哪個方案?請采用列表法或樹狀圖說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線與軸交于點、(點在點的左側),與軸交于點.
(1)求點,點的坐標;
(2)我們規(guī)定:對于直線,直線,若,則直線;反過來也成立.請根據(jù)這個規(guī)定解決下列問題:
①直線與直線是否垂直?并說明理由;
②若點是拋物線的對稱軸上一動點,是否存在點與點,點構成以為直角邊的直角三角形?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是正方形ABCD內一點,點P到點A,B和D的距離分別為1,2,.△ADP沿點A旋轉至△ABP′,連接PP′,并延長AP與BC相交于點Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠MON=90°,A是∠MON內部的一點,過點A作AB⊥ON,垂足為點B,AB=3厘米,OB=4厘米,動點E、F同時從O點出發(fā),點E以1.5厘米/秒的速度沿ON方向運動,點F以2厘米/秒的速度沿OM方向運動,EF與OA交于點C,連接AE,當點E到達點B時,點F隨之停止運動,設運動時間為t秒(t>0).
(1)當t=1秒時,△EOF與△ABO是否相似?請說明理由;
(2)在運動過程中,不論t取何值,總有EF⊥OA,為什么?
(3)在運動過程中,是否存在某一時刻t,使得△AEB與△OEF相似?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com