精英家教網 > 初中數學 > 題目詳情

【題目】在平面直角坐標系中,拋物線y=﹣x2+2bx+c與x軸交于點A、B(點A在點B的右側),且與y軸正半軸交于點C,已知A(2,0)
(1)當B(﹣4,0)時,求拋物線的解析式;
(2)O為坐標原點,拋物線的頂點為P,當tan∠OAP=3時,求此拋物線的解析式;
(3)O為坐標原點,以A為圓心OA長為半徑畫⊙A,以C為圓心, OC長為半徑畫圓⊙C,當⊙A與⊙C外切時,求此拋物線的解析式.

【答案】
(1)解:把點A(2,0)、B(﹣4,0)的坐標代入y=﹣x2+2bx+c得, ,

∴b=﹣1.c=8,

∴拋物線的解析式為y=﹣x2﹣2x+8


(2)解:如圖1,

設拋物線的對稱軸與x軸的交點為H,把點A(2,0)的坐標代入y=﹣x2+2bx+c得,

﹣4+4b+c=0①,

∵拋物線的頂點為P,

∴y=﹣x2+2bx+c=﹣(x﹣b)2+b2+c,

∴P(b,b2+c),

∴PH=b2+c,AH=2﹣b,

在Rt△PHA中,tan∠OAP= ,

=3②,

聯立①②得, ,

(不符合題意,舍)或

∴拋物線的解析式為y=﹣x2﹣2x+8


(3)解:∵如圖2,

拋物線y=﹣x2+2bx+c與y軸正半軸交于點C,

∴C(0,c)(c>0),

OC= c,

∵A(2,0),

∴OA=2,

∴AC= ,

∵⊙A與⊙C外切,

∴AC= c+2= ,

∴c=0(舍)或c= ,

把點A(2,0)的坐標代入y=﹣x2+2bx+c得,﹣4+4b+c=0,

∴b= ,

∴拋物線的解析式為y=﹣x2+ x+


【解析】(1)利用待定系數法即可確定出函數解析式;(2)用tan∠OAP=3建立一個b,c的關系,再結合點A得出的等式即可求出b,c進而得出函數關系式;(3)用兩圓外切,半徑之和等于AC建立方程結合點A代入建立的方程即可得出拋物線解析式.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】嘉淇準備完成題目:化簡:,發(fā)現系數印刷不清楚.

(1)他把猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);

(2)他媽媽說:你猜錯了,我看到該題標準答案的結果是常數.通過計算說明原題中是幾?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖1,RtABCRtA'B'C',AB=A'B',AC=A'C',C=C'=90°.

求證:RtABCRtA'B'C'全等.

(1)請你用如果…,那么…”的形式敘述上述命題;

(2)ABCA'B'C'拼在一起,請你畫出兩種拼接圖形;例如圖2:(即使點A與點A'重合,C與點C'重合.)

(3)請你選擇你拼成的其中一種圖形,證明該命題.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使得點A落在點A'處,當A'E⊥AC時,A'B=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCAB=AC,∠BAC=90°,PBC上的一動點,AP=AQ,∠PAQ=90°,連接CQ

(1)求證:CQBC

(2)△ACQ能否是直角三角形?若能,請直接寫出此時點P的位置;若不能請說明理由.

(3)當點PBC上什么位置時,△ACQ是等腰三角形?請說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在ABCD中,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,若HG=24 cm,WG=8 cm,CW=6 cm,求陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“五一”小長假,小穎和小梅兩家計劃從“北京天安門”“三亞南山”“內蒙古大草原”三個景區(qū)中任意選擇一景區(qū)游玩,小穎和小梅制作了如下三張質地大小完全相同的卡片,背面朝上洗勻后各自從中抽去一張來確定游玩景區(qū)(第一人抽完放回洗勻后另一人再抽去),則兩人抽到同一景區(qū)的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知A(﹣4,0),B(0,4),在x軸上確定點M,使三角形MAB是等腰三角形,則M點的坐標為_____

查看答案和解析>>

同步練習冊答案